Using the demon density functional program, 104 points on the potential‐energy surface for the ground electronic state of the HNSi molecule were calculated. An analytic function was fitted through these points and used in two different computer programs (called Morse oscillator–rigid bender internal dynamics and triatom) to calculate the vibration–rotational energies of the HNSi and DNSi molecules. Other analytic functions were fitted through the calculated dipole‐moment data to compute the vibrational transition moments and the vibrationally averaged dipole moments. The computed fundamentals ν1, ν2, and ν3 for HNSi from the triatom program are 3466, 413, and 1172 cm−1, respectively, in reasonable agreement with the observed values of 3588, 523, and 1198 cm−1. Agreement is similar for the Morse oscillator–rigid bender internal dynamics program as well as for DNSi.  

1.
P. J. Bruna and S. D. Peyerimhoff, in Ab Initio Methods in Quantum Chemistry, edited by K. P. Lawley (Wiley, New York, 1987), p. 1.
2.
Ion and Cluster Ion Spectroscopy and Structure, edited by P. Botschwina and J. P. Maier (Elsevier, New York, 1989) p. 59.
3.
P. Jensen, in Methods in Computational Molecular Physics, edited by S. Wilson and G. H. F. Diercksen (Plenum, New York, 1992, in press).
4.
J. F.
Ogilvie
and
S.
Cradock
,
Chem. Commun.
364
(
1966
).
5.
M.
Elhanine
,
R.
Farrenq
, and
G.
Guelachvili
,
J. Chem. Phys.
94
,
2529
(
1991
).
6.
M.
Bogey
,
C.
Demuynck
,
J. L.
Destombes
, and
A.
Walters
,
Astron. Astrophys.
244
,
L47
(
1991
).
7.
J. N.
Murrell
,
H. W.
Kroto
, and
M. F.
Guest
,
J. Chem. Soc. Chem. Commun.
1977
,
619
(
1977
).
8.
H. W.
Kroto
,
J. N.
Murrell
,
A.
Al-Derzi
, and
M. F.
Guest
,
Astrophys. J.
219
,
886
(
1978
).
9.
R.
Preuss
,
R. J.
Buenker
, and
S. D.
Peyerimhoff
,
J. Mol. Struct.
49
,
171
(
1978
).
10.
F. F.
Roelandt
,
D. F.
van de Vondel
, and
G. P.
van der Kelen
,
J. Mol. Struct.
54
,
221
(
1979
).
11.
B. T.
Luke
,
J. A.
Pople
,
M.-B.
Krogh-Jespersen
,
Y.
Apeloig
,
M.
Karni
,
J.
Chandrasekher
, and
P.
von R. Schleyer
,
J. Am. Chem. Soc.
108
,
270
(
1986
).
12.
P.
Botschwina
,
M.
Tommek
,
P.
Sebald
,
M.
Bogey
,
C.
Demuynck
,
J. L.
Destombes
, and
A.
Walters
,
J. Chem. Phys.
95
,
7769
(
1991
).
13.
A. D.
Becke
,
Int. J. Quantum Chem. Symp.
23
,
599
(
1989
).
14.
B.
Delley
,
J. Chem. Phys.
92
,
508
(
1990
).
15.
A.
St-Amant
and
D. R.
Salahub
,
Chem. Phys. Lett.
169
,
387
(
1990
);
A. St-Amant, Ph. D. thesis, University of Montreal (1991).
16.
J. Andzelm, in Density Functional Methods in Chemistry, edited by J. Labanowski and J. Andzelm (Springer-Verlag, New York, 1991).
17.
D. P.
Chong
,
Chin. J. Phys.
30
,
115
(
1992
).
18.
P.
Jensen
,
J. Mol. Spectrosc.
128
,
478
(
1988
) and references therein.
19.
P.
Jensen
,
J. Chem. Soc. Faraday Trans. II
84
,
1315
(
1988
).
20.
J.
Tennyson
and
S.
Miller
,
Comput. Phys. Commun.
55
,
149
(
1989
).
21.
P.
Jensen
,
J. Mol. Spectrosc.
132
,
429
(
1988
).
22.
J.
Almlöf
and
P.
Taylor
,
J. Chem. Phys.
84
,
4070
(
1987
).
23.
J. P.
Perdew
,
Phys. Rev
33
,
8822
(
1986
).
24.
S. J.
Vosco
,
L.
Wilk
, and
M.
Nair
,
Can. J. Phys.
58
,
1200
(
1980
).
25.
M. E. Casida (private communication, 1992). The earlier auxiliary fitting functions for hydrogen did not conform to the so-called one-third rule. The current A-HYDROGEN (3, 1;3, 1) functions with exponents of (45.0, 7.5, 1.5, 0.3; 15.0, 2.5, 0.5, 0.1) are now consistent with that rule.
26.
D. P.
Chong
and
D.
Papoušek
,
J. Mol. Spectrosc.
155
,
167
(
1992
).
27.
J. F. Ogilvie (private communication, 1992).
28.
J. F.
Ogilvie
and
M. J.
Newlands
,
Trans. Faraday Soc.
65
,
2602
(
1969
).
29.
M. Oswald, M. Sc. thesis, University of Göttingen, 1991.
30.
P. R.
Bunker
,
I. P.
Hamilton
, and
P.
Jensen
,
J. Mol. Spectrosc.
155
,
44
(
1992
).
31.
G.
Maier
,
J.
Glatthaar
, and
H. P.
Reisenauer
,
Chem. Ber.
122
,
2403
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.