Characteristics of the ground electronic state of HNCO have been investigated theoretically in a series of eight abinitio analyses involving qualitative features of the electronic structure, the barrier to linearity, the NH(3Σ)+CO fragmentation energy, the H–NCO bond dissociation energy, heats of formation of isomers of HNCO, fundamental vibrational frequencies and anharmonic force fields, the rovibrational spectrum of DNCO, and the precise Re structure of isocyanic acid. Sundry state‐of‐the‐art electronic structure methods were employed in the study, including restricted and unrestricted Hartree–Fock (RHF and UHF), complete‐active‐space self‐consistent‐field (CASSCF), configuration interaction singles and doubles (CISD), Mo/ller–Plesset perturbation theory through fourth and occasionally fifth order (MP2–MP5), coupled‐cluster singles and doubles (CCSD), and CCSD augmented by a perturbative contribution from connected triple excitations [CCSD(T)]. The one‐particle basis sets ranged in quality from (9s5p1d/4s2p1d) to (13s8p3d2f/6s5p3d2f ) on the heavy atoms and from (4s1p/2s1p) to (6s2p1d/4s2p1d) on hydrogen. Several revisions of thermochemical data are proposed, in particular, a larger barrier to linearity of 5.7(3) kcal mol−1, an enhanced bond energy of 85.4(10) kcal mol−1 for D0(NH–CO), and more reliable relative energies for the isomers of HNCO, viz., γe(HOCN)=25.5(10), γe(HCNO)=70(2), and γe(HONC)=84.5(15) kcal mol−1. In addition, the experimental value D0(H–NCO)=113.0(2) kcal mol−1 is confirmed. These results lead to several new proposals for heats of formation (ΔH°f,0, kcal mol−1): HNCO(−26.1), HOCN(−0.7), HCNO(+43.0), HONC (+57.6), and NCO(+35.3). A complete quartic force field has been constructed for HNCO by combining RHF third‐ and fourth‐derivative predictions with CCSD quadratic force constants subjected to the scaled quantum mechanical (SQM) optimization scheme.

This force field yields a set of ωi and χij vibrational constants which gives the following fundamental frequencies (with total anharmonicities in parentheses): ν1=3534(−186), ν2=2268(−45), ν3=1330(−9), ν4=778(−50), ν5=576(+9), and ν6=657(+21) cm−1, thus reproducing the observed band origins to 4 cm−1 or less. For DNCO the theoretical force field reveals misassignments of the low‐frequency bending vibrations and predicts ν4(a′)=727, ν5(a′)=458, and ν6(a″)=633 cm−1. Finally, the theoretical vibration–rotation interaction constants (αi) for five isotopic species of HNCO have been used in conjunction with empirical rotational constants and the Kraitchman equations to determine re(N–H)=1.0030(20) Å, re(N–C)=1.2145(6) Å, re(C–O)=1.1634(4) Å, θe(H–N–C)=123.34(20)°, and θe(N–C–O)=172.22(20)°.

1.
Man’s Impact on the Global Environment, Report of the Study of Critical Environmental Problems (SCEP), (M. I. T., Cambridge, Mass., 1970).
2.
H.
Johnston
,
Science
173
,
517
(
1971
).
3.
T. Godish, Air Quality, 2nd ed. (Lewis, Chelsea, Michigan, 1991).
4.
I. Glassman, Combustion, 2nd ed. (Academic, Orlando, 1987).
5.
K. Wark and C. F. Warner, Air Pollution: Its Origin and Control, 2nd ed. (Harper & Row, New York, 1981).
6.
R. K. Hanson and S. Salimian, in Combustion Chemistry, edited by W. C. Gardiner, Jr. (Springer, New York, 1984), p. 361.
7.
R. K. Lyon, Method for the Reduction of the Concentration of NO in Combustion Effluents Using Ammonia, U.S. Patent No. 3,900,554 (1975).
8.
M. A.
Kimball-Linne
and
R. K.
Hanson
,
Combust. Flame
64
,
337
(
1986
).
9.
R. K.
Lyon
, Kinetics and Mechanism of Thermal DeNOx. A Review, 194th Annual ACS Meeting,
Division of Fuel Chemistry
32
,
433
(
1987
).
10.
J. A.
Miller
and
C. T.
Bowman
,
Int. J. Chem. Kinet.
23
,
289
(
1991
).
11.
S. P.
Walch
,
R. J.
Duchovic
, and
C. M.
Rohlfing
,
J. Chem. Phys.
90
,
3230
(
1989
).
12.
S. P.
Walch
,
J. Chem. Phys.
93
,
2384
(
1990
).
13.
H.
Koizuma
,
G. C.
Schatz
, and
S. P.
Walch
,
J. Chem. Phys.
95
,
4130
(
1991
).
14.
R. A.
Perry
and
D. L.
Siebers
,
Nature (London)
324
,
657
(
1986
).
15.
D. L. Siebers and J. A. Caton, Reduction of Nitrogen Oxides by the RAPRENOx Process, Sandia National Laboratories Report SAND88-8713B (1988).
16.
R. K.
Lyon
and
J. A.
Cole
,
Combust. Flame
82
,
435
(
1990
).
17.
M. P.
Heap
,
S. L.
Chen
,
J. C.
Kramlich
,
J. M.
McCarthy
, and
D. W.
Pershing
,
Nature (London)
335
,
620
(
1988
).
18.
B. G.
Wicke
,
K. A.
Grady
, and
J. W.
Ratcliffe
,
Combust. Flame
78
,
249
(
1989
).
19.
D. L.
Siebers
and
J. A.
Caton
,
Combust. Flame
79
,
31
(
1990
).
20.
J. A.
Caton
and
D. L.
Siebers
,
Combust. Sci. Technol.
65
,
277
(
1989
).
21.
F. P. Tully, R. A. Perry, L. R. Thorne, and M. D. Allendorf, Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh (1989), p. 1101.
22.
J. A.
Miller
and
C. T.
Bowman
,
Prog. Energy Combust. Sci.
15
,
287
(
1989
).
23.
D. J.
Belson
and
A. N.
Strachan
,
Chem. Soc. Rev.
11
,
41
(
1982
).
24.
J. D.
Mertens
,
A. Y.
Chang
,
R. K.
Hanson
, and
C. T.
Bowman
,
Int. J. Chem. Kinet.
24
,
279
(
1992
).
25.
X.
Liu
,
N. P.
Machara
, and
R. D.
Coombe
,
J. Phys. Chem.
95
,
4983
(
1991
).
26.
J. D.
Mertens
,
K.
Kohse-Hoinghaus
,
R. K.
Hanson
, and
C. T.
Bowman
,
Int. J. Chem. Kinet.
23
,
655
(
1991
).
27.
J. D.
Mertens
,
A. Y.
Chang
,
R. K.
Hanson
, and
C. T.
Bowman
,
Int. J. Chem. Kinet.
21
,
1049
(
1989
).
28.
Y.
He
,
X.
Liu
,
M. C.
Lin
, and
C. F.
Melius
,
Int. J. Chem. Kinet.
23
,
1129
(
1991
).
29.
W.
Beck
and
K.
Feldl
,
Angew. Chem. Internat. Ed.
5
,
722
(
1966
).
30.
W.
Beck
,
P.
Swoboda
,
K.
Feldl
, and
R. S.
Tobias
,
Chem. Ber.
104
,
533
(
1971
).
31.
W.
Beck
,
E.
Schuierer
, and
K.
Feldl
,
Angew. Chem. Internat. Ed.
4
,
698
(
1965
).
32.
B. P.
Winnewisser
,
M.
Winnewisser
, and
F.
Winther
,
J. Mol. Spectrosc.
51
,
65
(
1974
).
33.
M.
Winnewisser
and
H. K.
Bodenseh
,
Z. Naturforsch. Teil A
22
,
1724
(
1967
).
34.
H. K.
Bodenseh
and
M.
Winnewisser
,
Z. Naturforsch. Teil A
24
,
1966
(
1969
).
35.
H. K.
Bodenseh
and
M.
Winnewisser
,
Z. Naturforsch. Teil A
24
,
1973
(
1969
).
36.
J. H.
Teles
,
G.
Maier
,
B. A.
Hess
, Jr.
,
L. J.
Schaad
,
M.
Winnewisser
, and
B. P.
Winnewisser
,
Chem. Ber.
122
,
753
(
1989
).
37.
D.
Poppinger
,
L.
Radom
, and
J. A.
Pople
,
J. Am. Chem. Soc.
99
,
7806
(
1977
).
38.
A. D.
McLean
,
G. H.
Loew
, and
D. S.
Berkowitz
,
J. Mol. Spectrosc.
64
,
184
(
1977
).
39.
K.
Yokoyama
,
S.
Takane
, and
T.
Fueno
,
Bull. Chem. Soc. Jpn.
64
,
2230
(
1991
).
40.
T. A.
Spiglanin
,
R. A.
Perry
, and
D. W.
Chandler
,
J. Phys. Chem.
90
,
6184
(
1986
).
41.
H.
Okabe
,
J. Chem. Phys.
53
,
3507
(
1970
).
42.
J.
Breulet
and
J.
Lievin
,
Theor. Chim. Acta
61
,
59
(
1982
).
43.
I.
Tokue
and
Y.
Ito
,
Chem. Phys.
89
,
51
(
1984
).
44.
T.
Hikida
,
Y.
Maruyama
,
Y.
Saito
, and
Y.
Mori
,
Chem. Phys.
121
,
63
(
1988
).
45.
E.
Quiñones
,
J.
Chen
, and
P. J.
Dagdigian
,
Chem. Phys. Lett.
174
,
65
(
1990
).
46.
K. M. T.
Yamada
,
M.
Winnewisser
, and
J. W. C.
Johns
,
J. Mol. Spectrosc.
140
,
353
(
1990
).
47.
R. A.
Ashby
and
R. L.
Werner
,
J. Mol. Spectrosc.
18
,
184
(
1965
).
48.
R. A.
Ashby
and
R. L.
Werner
,
Spectrochim. Acta
22
,
1345
(
1966
).
49.
B.
Krakow
,
R. C.
Lord
, and
G. O.
Neely
,
J. Mol. Spectrosc.
27
,
148
(
1968
).
50.
G. O.
Neely
,
J. Mol. Spectrosc.
27
,
177
(
1968
).
51.
D. A.
Steiner
,
K. A.
Wishah
,
S. R.
Polo
, and
T. K.
McCubbin
, Jr.
,
J. Mol. Spectrosc.
76
,
341
(
1979
).
52.
K.
Yamada
,
J. Mol. Spectrosc.
79
,
323
(
1980
).
53.
K.
Yamada
,
J. Mol. Spectrosc.
81
,
139
(
1980
).
54.
K.
Yamada
,
J. Mol. Spectrosc.
68
,
423
(
1977
).
55.
L.
Fusina
and
I. M.
Mills
,
J. Mol. Spectrosc.
86
,
488
(
1981
).
56.
L.
Fusina
,
M.
Carlotti
, and
B.
Carli
,
Can. J. Phys.
62
,
1452
(
1984
).
57.
G.
Herzberg
and
C.
Reid
,
Discuss. Faraday Soc.
9
,
92
(
1950
).
58.
P.
Botschwina
,
E.
Nachbaur
, and
B. M.
Rode
,
Chem. Phys. Lett.
41
,
486
(
1976
).
59.
D.
Buhl
,
L. E.
Snyder
, and
J.
Edrich
,
Astrophys. J.
177
,
625
(
1972
).
60.
D.
Buhl
,
L. E.
Snyder
,
P. R.
Schwartz
, and
J.
Edrich
,
Nature (London)
243
,
513
(
1973
).
61.
P. M.
Solomon
,
A. A.
Penzias
,
K. B.
Jefferts
, and
R. W.
Wilson
,
Astrophys. J. Lett.
185
,
L63
(
1973
).
62.
W. H.
Hocking
,
M. C. L.
Gerry
, and
G.
Winnewisser
,
Can. J. Phys.
53
,
1869
(
1975
).
63.
J.
Kraitchman
,
Am. J. Phys.
21
,
17
(
1953
).
64.
C. C.
Costain
,
J. Chem. Phys.
29
,
864
(
1958
).
65.
J. W.
Rabalais
,
J. R.
McDonald
, and
S. P.
McGlynn
,
J. Chem. Phys.
51
,
5103
(
1969
).
66.
R. N.
Dixon
and
G. H.
Kirby
,
Trans. Faraday Soc.
64
,
2002
(
1968
).
67.
J. Y. P.
Mui
and
R. A.
Back
,
Can. J. Chem.
41
,
826
(
1963
).
68.
R. A.
Back
,
J. Chem. Phys.
40
,
3493
(
1964
).
69.
J. L.
Brash
and
R. A.
Back
,
Can. J. Chem.
43
,
1778
(
1965
).
70.
R. A.
Back
and
R.
Ketcheson
,
Can. J. Chem.
46
,
531
(
1968
).
71.
N. J.
Friswell
and
R. A.
Back
,
Can. J. Chem.
46
,
527
(
1968
).
72.
W. D.
Woolley
and
R. A.
Back
,
Can. J. Chem.
46
,
295
(
1968
).
73.
T. A.
Spiglanin
,
R. A.
Perry
, and
D. W.
Chandler
,
J. Chem. Phys.
87
,
1568
(
1987
).
74.
T. A.
Spiglanin
and
D. W.
Chandler
,
J. Chem. Phys.
87
,
1577
(
1987
).
75.
T. A.
Spiglanin
and
D. W.
Chandler
,
Chem. Phys. Lett.
141
,
428
(
1987
).
76.
The descriptors DZ (double-zeta), QZ (quadruple-zeta), and PZ (penta-zeta) are derived specifically from the number of contracted p shells in the valence region of the heavy-atom basis sets.
77.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
78.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
53
,
2823
(
1970
).
79.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
55
,
716
(
1971
).
80.
W. D.
Allen
and
H. F.
Schaefer
III
,
Chem. Phys.
108
,
243
(
1986
).
81.
The orbital exponents of the diffuse functions are αs(O) = 0.084 58,αp(O) = 0.056 54,αs(N) = 0.063 76,αp(N) = 0.048 61,αs(C) = 0.045 61, and αp(C) = 0.033 44.
82.
H. Partridge, Near Hartree-Fock Quality Gaussian Type Orbital Basis Sets for the First- and Third-Row Atoms, NASA Technical Memorandum 101044 (1989).
83.
M. W.
Wong
,
P. M. W.
Gill
,
R. H.
Nobes
, and
L.
Radom
,
J. Phys. Chem.
92
,
4875
(
1988
).
84.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
85.
C. C. J.
Roothaan
,
Rev. Mod. Phys.
23
,
69
(
1951
).
86.
J. A.
Pople
and
R. K.
Nesbet
,
J. Chem. Phys.
22
,
571
(
1954
).
87.
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory (Wiley-Interscience, New York, 1986).
88.
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, New York, 1989).
89.
B. O. Roos, in Ab Initio Methods in Quantum Chemistry, edited by K. P. Lawley (Wiley, 1987), Vol. Ill, p. 399.
90.
I. Shavitt, in Modern Theoretical Chemistry, edited by H. F. Schaefer III (Plenum, New York, 1977), Vol. 3, p. 189.
91.
B. R.
Brooks
and
H. F.
Schaefer
III
,
J. Chem. Phys.
70
,
5391
(
1979
).
92.
P.
Saxe
,
D. J.
Fox
,
H. F.
Schaefer
III
, and
N. C.
Handy
,
J. Chem. Phys.
77
, (
1982
).
93.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
94.
C.
Mo/ller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
95.
J. A.
Pople
,
J. S.
Binkley
, and
R.
Seeger
,
Int. J. Quantum Chem. Symp.
10
,
1
(
1976
).
96.
R.
Krishnan
and
J. A.
Pople
,
Int. J. Quantum Chem.
14
,
91
(
1978
).
97.
R.
Krishnan
,
M. J.
Frisch
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
4244
(
1980
).
98.
K.
Raghavachari
,
J. A.
Pople
,
E. S.
Replogle
, and
M.
Head-Gordon
,
J. Phys. Chem.
94
,
5579
(
1990
).
99.
S. W.
Kucharski
and
R. J.
Bartlett
,
Adv. Quantum Chem.
18
,
281
(
1986
).
100.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
101.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
102.
J. Paldus, in New Horizons of Quantum Chemistry, edited by P.-O. Löwdin and B. Pullman (Reidel, Dordrecht, 1983), p. 31.
103.
R. J. Bartlett, C. E. Dykstra, and J. Paldus, in Advanced Theories and Computational Approaches to the Electronic Structure of Molecules, edited by C. E. Dykstra (Reidel, Dordrecht, 1984), p. 127.
104.
G. E.
Scuseria
,
A. C.
Scheiner
,
T. J.
Lee
,
J. E.
Rice
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
86
,
2881
(
1987
).
105.
A. C.
Scheiner
,
G. E.
Scuseria
,
J. E.
Rice
,
T. J.
Lee
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
87
,
5361
(
1987
).
106.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
107.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
108.
J. A.
Pople
,
M. J.
Frisch
,
B. T.
Luke
, and
J. S.
Binkley
,
Int. J. Quantum Chem. Symp.
17
,
307
(
1983
).
109.
N. C.
Handy
,
P. J.
Knowles
, and
K.
Somasundram
,
Theor. Chim. Acta
68
,
87
(
1985
).
110.
R. J.
Bartlett
and
I.
Shavitt
,
Chem. Phys. Lett.
50
,
190
(
1977
).
111.
W. D.
Laidig
,
G.
Fitzgerald
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
113
,
151
(
1985
).
112.
H. B.
Schlegel
,
J. Chem. Phys.
84
,
4530
(
1986
).
113.
H. B.
Schlegel
,
J. Phys. Chem.
92
,
3075
(
1988
).
114.
PSI 1.0 (PSITECH Inc., Watkinsville, Georgia, 1989).
115.
R. D. Amos and J. E. Rice, CADPAC: The Cambridge Analytic Derivative Package (Cambridge University, Cambridge, 1987).
116.
M. J. Frisch, M. Head-Gordon, G. W. Trucks, J. B. Foresman, H. B. Schlegel, K. Rachavachari, M. A. Robb, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. Martin, L. R. Kahn, J. J. P. Stewart, S. Topiol, and J. A. Pople, GAUSSIAN 90 (Gaussian, Inc., Pittsburgh, 1990).
117.
J. F. Gaw and N. C. Handy, Ann. Rept. R. Soc. Chem. C 291 (1984).
118.
H. F.
Schaefer
III
and
Y.
Yamaguchi
,
J. Mol. Struct. THEOCHEM
135
,
369
(
1986
).
119.
Geometrical Derivatives of Energy Surfaces and Molecular Properties, edited by P. Jo/rgensen and J. Simons (Reidel, Dordrecht, 1986).
120.
P.
Pulay
,
Mol. Phys.
17
,
197
(
1969
).
121.
P. Pulay, in Modern Theoretical Chemistry, edited by H. F. Schaefer III, (Plenum, New York, 1977), Vol. 4, p. 153.
122.
B. R.
Brooks
,
W. D.
Laidig
,
P.
Saxe
,
M. A.
Vincent
,
J. F.
Gaw
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
72
,
4652
(
1980
).
123.
J. E.
Rice
,
R. D.
Amos
,
N. C.
Handy
,
T. J.
Lee
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
85
,
963
(
1986
).
124.
A. P.
Rendell
and
T. J.
Lee
,
J. Chem. Phys.
94
,
6219
(
1991
).
125.
Y.
Osamura
,
Y.
Yamaguchi
,
P.
Saxe
,
M. A.
Vincent
,
J. F.
Gaw
, and
H. F.
Schaefer
III
,
Chem. Phys.
72
,
131
(
1982
).
126.
Y.
Osamura
,
Y.
Yamaguchi
,
P.
Saxe
,
D. J.
Fox
,
M. A.
Vincent
, and
H. F.
Schaefer
III
,
J. Mol. Struct. THEOCHEM
103
,
183
(
1983
).
127.
P.
Pulay
and
F.
Török
,
Acta Chim. Hung.
44
,
287
(
1965
).
128.
J. Overend, in Infrared Spectroscopy and Molecular Structure, edited by M. Davies (Elsevier, Amsterdam, 1963), p. 345.
129.
G. Zerbi, in Vibrational Intensities in Infrared and Raman Spectroscopy, edited by W. B. Person and G. Zerbi (Elsevier, Amsterdam, 1982).
130.
J. F.
Gaw
,
Y.
Yamaguchi
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
81
,
6395
(
1984
).
131.
J. F.
Gaw
,
Y.
Yamaguchi
,
H. F.
Schaefer
III
, and
N. C.
Handy
,
J. Chem. Phys.
85
,
5132
(
1986
).
132.
I. M. Mills, in Molecular Spectroscopy: Modern Research, edited by K. N. Rao and C. W. Mathews (Academic, New York, 1972), Vol. 1, p. 115.
133.
H. H.
Nielsen
,
Rev. Mod. Phys.
23
,
90
(
1951
).
134.
D. Papoušek and M. R. Aliev, Molecular Vibrational-Rotational Spectra (Elsevier, Amsterdam, 1982).
135.
J. K,. G. Watson, in Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier, Amsterdam, 1977), Vol. 6, p. 1.
136.
J. K. G.
Watson
,
J. Chem. Phys.
48
,
4517
(
1968
).
137.
D. A.
Clabo
, Jr.
,
W. D.
Allen
,
R. B.
Remington
,
Y.
Yamaguchi
, and
H. F.
Schaefer
III
,
Chem. Phys.
123
,
187
(
1988
).
138.
W. D.
Allen
,
Y.
Yamaguchi
,
A. G.
Császár
,
D. A.
Clabo
, Jr.
,
R. B.
Remington
, and
H. F.
Schaefer
III
,
Chem. Phys.
145
,
427
(
1990
).
139.
The Hessian index formally denotes the total number of negative eigenvalues resulting from the vibrational secular equations involving the quadratic force field. However, the out-of-plane block of the secular problem is excluded from consideration here.
140.
The FNNF molecule is representative of such systems. See
T. J.
Lee
,
J. E.
Rice
,
G. E.
Scuseria
, and
H. F.
Schaefer
III
,
Theor. Chim. Acta
75
,
81
(
1989
).
141.
See, for example,
P.
Valtazanos
and
K.
Ruedenberg
,
Theor. Chim. Acta
69
,
281
(
1986
).
142.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Chem. Rev.
74
,
127
(
1974
).
143.
A.
Walsh
,
J. Chem. Soc.
, Part.
III
,
2260
(
1953
), and articles which immediately follow.
144.
Note from the data given in the caption of Fig. 3 that the inclusion of the 1s core orbitals in the sum actually reverses the sign of the net orbital energy first derivative, indicating an erroneous preference for cis bending.
145.
The directions of the shifts in the net atomic charges are confirmed by calculations using larger basis sets. For example, at the DZ(d,p) CISD optimum structures, the QZ(2d1f,2p1d) SCF net charges are linear, q(O) = −0.307,q(C) = 0.534,q(N) = −0.537, and q(H) = 0.305; and trans bent, q(O) = −0.262,q(N) = −0.422, and q(H) = 0.212.
146.
At the DZ(d,p) CISD geometry, the following RHF dipole moments (in D) are obtained: DZ(d,p), 2.344; QZ(2d,2p), 2.256; and PZ(3d2f,2p1d), 2.236. Moreover, the DZ(d,p)CCSD//DZ(d,p) CCSD value is 2.154 D.
147.
The empirical estimate of b| = 1.35±0.10 D is actually smaller than the corresponding fia component, at variance with the CISD prediction. To the degree that θ(H-N-C( is shifted toward linearity upon vibrational averaging, the equilibrium μa and μb values should be smaller and larger in magnitude, respectively, than the observed components. Thus zero-point vibrational effects may account for much of the disparity in the relative ordering of a| and b|.
148.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem. Symp.
23
,
199
(
1989
).
149.
A. D.
McLean
,
G. H.
Loew
, and
D. S.
Berkowitz
,
J. Mol. Spectrosc.
72
,
430
(
1978
).
150.
C.
Glidewell
and
C.
Thomson
,
J. Mol. Struct. THEOCHEM
104
,
287
(
1983
).
151.
T. J.
Lee
,
R. B.
Remington
,
Y.
Yamaguchi
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
89
,
408
(
1988
).
152.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand, Princeton, 1979).
153.
W. R.
Anderson
,
J. Phys. Chem.
93
,
530
(
1989
).
154.
C. W.
Bauschlicher
, Jr.
and
S. R.
Langhoff
,
Chem. Phys. Lett.
135
,
67
(
1987
).
155.
A similar result of 86.7±0.5 kcal mol−1 was recently obtained via large-basis MP4 and CCSD(T) studies of pertinent isodesmic reactions; N. Oliphant, M. Rosenkrantz, and D. Konowalow (personal communication, 1992).
156.
A. R.
Hoy
,
I. M.
Mills
, and
G.
Strey
,
Mol. Phys.
24
,
1265
(
1972
).
157.
W. S.
Benedict
and
E. K.
Plyler
,
Can. J. Phys.
35
,
1235
(
1957
).
158.
I.
Suzuki
,
J. Mol. Spectrosc.
25
,
479
(
1968
).
159.
I.-C.
Chen
,
W. H.
Green
, Jr.
, and
C. B.
Moore
,
J. Chem. Phys.
89
,
314
(
1988
).
160.
P. R.
Bunker
,
P.
Jensen
,
W. P.
Kraemer
, and
R.
Beardsworth
,
J. Chem. Phys.
85
,
3724
(
1986
).
161.
C. B.
Moore
and
G. C.
Pimentel
,
J. Chem. Phys.
38
,
2816
(
1963
).
162.
A. D.
McLean
,
P. R.
Bunker
,
R. M.
Escribano
, and
P.
Jensen
,
J. Chem. Phys.
87
,
2166
(
1987
).
163.
M. D.
Marshall
and
A. R. W.
McKellar
,
J. Chem. Phys.
85
,
3716
(
1986
).
164.
C. W.
Bauschlicher
,Jr.
,
S. R.
Langhoff
, and
P. R.
Taylor
,
Chem. Phys. Lett.
135
,
543
(
1987
);
C. W.
Bauschlicher
, Jr.
,
S. R.
Langhoff
, and
P. R.
Taylor
,
Adv. Chem. Phys.
77
,
103
(
1990
).
165.
H.
Partridge
,
S. R.
Langhoff
,
C. W.
Bauschlicher
, Jr.
, and
D. W.
Schwenke
,
J. Chem. Phys.
88
,
3174
(
1988
).
166.
K.
Jankowski
,
R.
Becherer
,
P.
Scharf
,
H.
Schiffer
, and
R.
Ahlrichs
,
J. Chem. Phys.
82
,
1413
(
1985
).
167.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
168.
R. S. Grev and H. F. Schaefer III, J. Chem. Phys, (submitted for publication).
169.
M.
Wolfsberg
,
A. A.
Massa
, and
J. W.
Pyper
,
J. Chem. Phys.
53
,
3138
(
1970
).
170.
Experimental vi and xij values were employed for CO2,H2O, CO, and NH (Refs. 200, 221, and 152, respectively). For HNCO the observed fundamental frequencies appearing in Fig. 2 were utilized in conjunction with the SQM(CCSD)+RHF//expt. anharmonic constants given in Table XIII (vide infra). For NH3 the Xij and xlili values were theoretical DZ+dSCF results from Ref. 216 except those which were affected by Fermi resonance. The remaining anharmonic constants and the fundamental frequencies of NH3 are experimental results (Refs. 157, 215).
171.
JANAF Thermochemical Tables, 3rd ed.,
J. Phys. Chem. Ref. Data
14
, Supp. No.
1
(
1985
).
172.
Evaluated from the heats of formation and the ZPVE corrections of CO and CO2 given in the text, as well as ΔH°f,0 = 58.98kcal mol−1 for O(3P) Ref. 171).
173.
R. N.
Dixon
,
Philos. Trans. R. Soc. London Ser. A
252
,
165
(
1960
).
174.
From the heats of formation (kcal mol−1l) listed in Ref. 171 for N3(188), H(216.0), and HN3(300.5), as well as the electron affinity of N3 reported in
R. L.
Jackson
,
M. J.
Pellerite
, and
J. I.
Brauman
,
J. Am. Chem. Soc.
103
,
1802
(
1981
).
175.
Obtained from the heats of formation of NH2, H, and NH3, given in Ref. 171.
176.
See the discussion in Refs. 45 and 177.
177.
K.-Y.
Du
and
D. W.
Setser
,
Chem. Phys. Lett.
153
,
393
(
1988
).
178.
C. E. Moore, Atomic Energy Levels, Office of Standard Reference Data, National Bureau of Standards (U.S. GPO, Washington, D.C., 1971), Vol. 1.
179.
From Ref. 211. The Raman fundamental frequencies of the cyanate anion in a host of solid KBr have been reported as ν1(σ) = 1207,ν2(π) = 630, and ν3(σ( = 2173 cm−1 have been found in an argon matrix (Ref. 183). These data yield a ZPVE correction to the electron affinity of +0.024 eV, which is much less than the uncertainty quoted by Ref. 211. Thus the cited value of 3.6 eV is taken as the vibrationless electron affinity.
180.
W.
Koch
and
G.
Frenking
,
J. Phys. Chem.
91
,
49
(
1987
).
181.
P. M. W.
Gill
and
L.
Radom
,
Chem. Phys. Lett.
132
,
16
(
1986
).
182.
QZ(2d1f,2p1d) total energies for OH (2II) at re(OH) = 0.96966thinsp;Å (Ref. 152): UHF(−75.423 406),UMP2(−75.627 790),UMP3( 75.639 528), and UMP4(−75.646 016). See Table IV and footnote b of Table V for the total energies of H2O and H.
183.
V. E.
Bondybey
and
J. H.
English
,
J. Chem. Phys.
67
,
2868
(
1977
).
184.
A. P.
Rendell
,
T. J.
Lee
, and
R.
Lindh
,
Chem. Phys. Lett.
194
,
84
(
1992
).
185.
P. R.
Bunker
,
B. M.
Landsberg
, and
B. P.
Winnewisser
,
J. Mol. Spectrosc.
74
,
9
(
1979
).
186.
The C–N distances in the 6–31G** MP2 reference structures (Ref. 36) of HOCN and HONC are probably 0.02–0.03 Å too long, as gauged from analogous results for HCN. Deficiencies of this size are not present in the DZ(d,p) CISD geometry of HNCO. Thus geometry relaxation effects are likely to decrease the relative energies of HOCN and HONC and partially offset the basis set trends.
187.
The experimental νi and Xij constants used in Eq. (18) for N2O appear in Ref. 213.
188.
The experimental νi and Xij values of Ref. 212 were utilized for CH4. The application of Eq. (18) is valid if one equates xl3l3 = 2G33 and xl4l4 = 2G44.
189.
The observation of sizeable amounts of CN radicals in the shock-heated decomposition of HNCO in the 2500–3500 K region was attributed in Ref. 39 to the fragmentation of HOCN. The degree to which the HOCNdirectHONCHO+CN pathway is competitive is unclear, however.
190.
Ashby and Werner (Ref. 47) give 659.8cm−1 for the ν6 band origin.
191.
B.
Lemoine
,
K.
Yamada
, and
G.
Winnewisser
,
Ber. Bunsenges. Phys. Chem.
86
,
795
(
1982
).
192.
D. A.
Steiner
,
S. R.
Polo
,
T. K.
McCubbin
, Jr.
, and
K. A.
Wishah
,
J. Mol. Spectrosc.
98
,
453
(
1983
).
193.
W. D.
Allen
and
A. G.
Császár
,
J. Chem. Phys.
98
, (
1992
), in press. See also W. D. Allen, A. L. L. East, and A. G. Császár, in Structures and Conformations of Non-Rigid Molecules, edited by J. Laane and M. Dakkouri (Kluwer, Dordrecht, 1993), in press.
194.
P.
Pulay
,
W.
Meyer
, and
J. E.
Boggs
,
J. Chem. Phys.
68
,
5077
(
1978
).
195.
P.
Pulay
,
G.
Fogarasi
,
G.
Pongor
,
J. E.
Boggs
, and
A.
Vargha
,
J. Am. Chem. Soc.
105
,
7037
(
1983
).
196.
G. Fogarasi and P. Pulay, in Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier, Amsterdam, 1985), Vol. 14, p. 125.
197.
W. D.
Allen
,
A. G.
Császár
, and
D. A.
Horner
,
J. Am. Chem. Soc.
114
,
6834
(
1992
).
198.
Relaxation of the constraint of αx and αy to the same scale factor was observed to yield optimum values separated by less than 0.015.
199.
For example, the harmonic stretching frequency (cm−1) for NH(3Σ is 3282.27 and those for NH3 are 3506 and 3577 (Ref. 157). The hydrogen stretching anharmonicities of some common species (cm−1) are: HF (−177) (Ref. 152);
H2O (Δ1 = −176, (Ref. 221);
NH3 (Δ1 = −170,Σ3 = −133); (Ref. 157);
and CH4 (Δ1 = −105,Δ = −134) (Ref. 212). Note that the Δ1 value for HNCO given by the RHF//RHF procedure (−151 cm−1) is significantly smaller than the SQM(CCSD)+RHF//expt. result, primarily due to the increased magnitude of the underlying F11 force constant.
200.
A.
Chédin
,
J. Mol. Spectrosc.
76
,
430
(
1979
).
201.
R. B.
Wattson
and
L. S.
Rothman
,
J. Mol. Spectrosc.
119
,
83
(
1986
).
202.
M.
Carlotti
,
G.
di Lonardo
,
G.
Galloni
, and
A.
Trombetti
,
J. Mol. Spectrosc.
62
,
192
(
1976
).
203.
M. E.
Jacox
,
J. Phys. Chem. Ref. Data
19
,
1387
(
1990
).
204.
V. E.
Bondybey
,
J. H.
English
,
C. W.
Mathews
, and
R. J.
Contolini
,
J. Mol. Spectrosc.
92
,
431
(
1982
).
205.
I.
Suzuki
,
M. A.
Pariseau
, and
J.
Overend
,
J. Chem. Phys.
44
,
3561
(
1966
).
206.
D. J.
DeFrees
,
G. H.
Loew
, and
A. D.
McLean
,
Astrophys. J.
254
,
405
(
1982
).
207.
C.
Glidewell
and
C.
Thomson
,
Chem. Phys. Lett.
86
,
340
(
1982
).
208.
H.-G.
Mack
and
H.
Oberhammer
,
Chem. Phys. Lett.
157
,
436
(
1989
).
209.
D.
Kivelson
and
E. B.
Wilson
,
J. Chem. Phys.
20
,
1575
(
1952
). See also p. 193 of Ref. 137.
210.
T.
Oka
and
Y.
Morino
,
J. Mol. Spectrosc.
6
,
472
(
1961
).
211.
C. A.
Wight
and
J. L.
Beauchamp
,
J. Am. Chem. Soc.
84
,
2503
(
1980
).
212.
D. L.
Gray
and
A. G.
Robiette
,
Mol. Phys.
37
,
1901
(
1979
).
213.
J.-L.
Teffo
and
A.
Chédin
,
J. Mol. Spectrosc.
135
,
389
(
1989
).
214.
W. D.
Allen
and
H. F.
Schaefer
III
,
J. Chem. Phys.
89
,
329
(
1988
).
215.
Y.
Morino
,
K.
Kuchitsu
, and
S.
Yamamoto
,
Spectrochim. Acta A
24
,
3353
(
1968
).
216.
J. F.
Gaw
and
N. C.
Handy
,
Chem. Phys. Lett.
121
,
321
(
1985
).
217.
C.-F.
Pau
and
W. J.
Hehre
,
J. Phys. Chem.
86
,
321
(
1982
).
218.
T. J.
Lee
and
A. P.
Rendell
,
Chem. Phys. Lett.
177
,
491
(
1991
).
219.
H.
Fleurent
,
W.
Joosen
, and
D.
Schoemaker
,
Phys. Rev. B
39
,
10409
(
1989
).
220.
D. A.
Steiner
,
S. R.
Polo
,
T. K.
McCubbin
, and
K. A.
Wishah
,
Can. J. Phys.
59
,
1313
(
1981
).
221.
J.
Pliva
,
V.
Spirko
, and
D.
Papousek
,
J. Mol. Spectrosc.
23
,
331
(
1967
).
This content is only available via PDF.
You do not currently have access to this content.