The liquid–vapor coexistence curve of a model water (the extended simple point charge model, SPCE) is evaluated by molecular dynamics simulation in the (N,V,E) ensemble. It is shown that the simulated system (N=256 water molecules) is too small to present a spinodal decomposition and, hence, can be described by a classical equation of state whose the critical parameters (Tc=651.7 K, ρc=0.326 g/cm3, and Pc=189 bar) are found to be very close to that of real water (Tc=647.13 K, ρc=0.322 g/cm3, and Pc=220.55 bar). The critical parameters for SPCE water in the thermodynamic limit are deduced from the simulation data employing Wegner type expansions for the order parameter and the coexistence curve diameter; here also the values of the critical parameters (Tc=640 K, ρc=0.29 g/cm3, and Pc=160 bar) are close to that of real water. The temperature dependence of the dielectric constant for water and steam at orthobaric densities is next evaluated between ambient and Tc; the agreement with the experimental data is quite remarkable (e.g., εSPCE=81.0 at 300 K and εSPCE=6. at Tc instead of 78.0 and 5.3, respectively, in real water). The modifications experienced by water’s architecture with the temperature are deduced from the evaluation of the atom–atom correlation functions. It is shown that a structural change occurs in the temperature range 423–473 K. This important reorganization is characterized by a shift of the second shell of neighbors from 4.5 to 5.5 A and the loss of almost all angular correlations beyond the first solvation shell. Moreover, it is observed that the average number of hydrogen bonds per molecule nHB scales with the density all along the saturation curve. In the same way the values of nHB for orthobaric densities seems to follow a law analogous to the law of rectilinear diameter for orthobaric densities.

1.
E. U.
Franck
,
J. Chem. Thermodyn.
19
,
225
(
1987
).
2.
A.
Rahman
and
F. H.
Stillinger
,
J. Chem. Phys.
55
,
3336
(
1971
).
3.
D. Levesque and J. J. Weiss, in The Monte Carlo Method in Condensed Matter Physics, edited by K. Binder (Springer, Berlin, 1991), p. 121.
4.
S. B.
Zhu
,
S.
Yao
,
J. B.
Zhu
,
S.
Singh
, and
G. W.
Robinson
,
J. Phys. Chem.
95
,
6211
(
1991
).
5.
H. J. C. Berendsen, J. P. M. Postma, W. F. Von Gunsteren, and J. Hermans, in Intermodular Forces, edited by B. Pullman (Reidel, Dordrecht, 1981), p. 331.
6.
B.
Guillot
,
J. Chem. Phys.
95
,
1453
(
1991
).
7.
O.
Matsuoka
,
E.
Clementi
, and
M.
Yoshimine
,
J. Chem. Phys.
64
,
1351
(
1976
).
8.
P.
Barnes
,
J. L.
Finney
,
J. D.
Nicholas
, and
J. E.
Quinn
,
Nature (London)
282
,
459
(
1979
).
9.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
10.
M.
Sprik
and
M. L.
Klein
,
J. Chem. Phys.
89
,
7556
(
1988
).
11.
K.
Watanabe
and
M. L.
Klein
,
Chem. Phys.
131
,
157
(
1989
).
12.
S.
Kuwajima
and
A.
Warshel
,
J. Phys. Chem.
94
,
460
(
1990
).
13.
P.
Ahlström
,
A.
Wallqvist
,
S.
Engström
, and
B.
Jönsson
,
Mol. Phys.
68
,
563
(
1989
).
14.
T. P.
Straatsma
and
J. A.
McCammon
,
Mol. Simulations
5
,
181
(
1990
).
15.
P.
Cieplak
,
P. A.
Kollman
, and
T.
Lybrand
,
J. Chem. Phys.
92
,
6755
(
1990
).
16.
J.
Caldwell
,
L. X.
Dang
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
112
,
9145
(
1990
).
17.
G. C.
Lie
and
E.
Clementi
,
Phys. Rev. A
33
,
2679
(
1986
).
18.
O.
Teleman
,
B.
Jönsson
, and
S.
Engström
,
Mol. Phys.
60
,
193
(
1987
);
A.
Wallqvist
and
O.
Teleman
,
Mol. Phys.
74
,
515
(
1991
).
19.
J.
Anderson
,
J.
Ullo
, and
S.
Yip
,
J. Chem. Phys.
87
,
1726
(
1987
).
20.
J. L.
Barrat
and
I. R.
McDonald
,
Mol. Phys.
70
,
535
(
1990
).
21.
D. E.
Smith
and
A. D. J.
Haymet
,
J. Chem. Phys.
96
,
8450
(
1992
).
22.
A.
Wallqvist
,
Chem. Phys.
148
,
439
(
1990
);
A.
Wallqvist
,
P.
Ahlström
, and
G.
Karlström
,
J. Phys. Chem.
94
,
1649
(
1990
).
23.
Y.
Guissani
,
B.
Guillot
, and
S.
Bratos
,
J. Chem. Phys.
88
,
5850
(
1988
).
24.
Y.
Kataoka
,
J. Chem. Phys.
87
,
589
(
1987
);
Y.
Kataoka
,
H.
Hamada
,
S.
Nose
, and
T.
Yamamoto
,
J. Chem. Phys.
77
,
5699
(
1982
).,
J. Chem. Phys.
25.
J. J.
De Pablo
and
J. M.
Prausnitz
,
Fluid Phase Equilibria
53
,
177
(
1989
).
26.
J. J.
De Pablo
,
J. M.
Prausnitz
,
H. J.
Strauch
, and
P. T.
Cummings
,
J. Chem. Phys.
93
,
7355
(
1990
);
H. J.
Strauch
and
P. T.
Cummings
,
J. Chem. Phys.
96
,
864
(
1991
).,
J. Chem. Phys.
27.
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
28.
J. J.
Nicolas
,
K. E.
Gubbins
,
W. B.
Street
, and
D. J.
Tildesley
,
Mol. Phys.
37
,
1429
(
1979
).
29.
F. H.
Ree
,
J. Chem. Phys.
73
,
5401
(
1980
).
30.
M. R.
Reddy
and
S. F.
O’Shea
,
Can. J. Phys.
64
,
677
(
1986
).
31.
F. F.
Abraham
,
Phys. Rep.
53
,
93
(
1979
).
32.
J. P.
Hansen
and
L.
Verlet
,
Phys. Rev.
184
,
151
(
1969
).
33.
M. R.
Mruzik
,
F. F.
Abraham
, and
G. M.
Pound
,
J. Chem. Phys.
69
,
3462
(
1978
).
34.
J. P.
Hansen
,
Phys. Rev. A
2
,
221
(
1970
).
35.
L. Haar, J. S. Gallagher, and G. S. Kell, NBS/NRC Steam Tables (Hemisphere, Washington, D.C., 1984).
36.
J. M. H.
Levelt Sengers
,
J.
Straub
,
K.
Watanabe
, and
P. G.
Hill
,
J. Phys. Chem. Ref. Data
14
,
193
(
1985
).
37.
F.
Sokolic
,
Y.
Guissani
, and
G.
Baranovic
,
Chem. Phys. Lett.
131
,
513
(
1986
).
38.
J. S. Rowlinson and F. L. Swinton, Liquid and Liquid Mixtures, 3rd ed. (Butterworth, London, 1982).
39.
J. M. H.
Levelt Sengers
,
Physica
73
,
73
(
1974
).
40.
J. V.
Sengers
and
J. M. H.
Levelt Sengers
,
Ann. Rev. Phys. Chem.
37
,
189
(
1986
).
41.
J.
Weiner
,
K. H.
Langley
, and
N. C.
Ford
, Jr.
,
Phys. Rev. Lett.
32
,
879
(
1974
).
42.
E. T.
Shimanskaya
,
I. V.
Bezruchko
,
V. I.
Basok
, and
Y. I.
Shimanskii
,
Sov. Phys. JETP
53
,
139
(
1981
).
43.
S.
Jüngst
,
B.
Knuth
, and
F.
Hensel
,
Phys. Rev. Lett.
55
,
2160
(
1985
).
44.
F.
Hensel
,
J. Phys. Condens. Matt.
2
, SA33-SA
45
(
1990
).
45.
R. E.
Goldstein
and
N. W.
Ashcroft
,
Phys. Rev. Lett.
55
,
2164
(
1985
).
46.
R. E.
Goldstein
,
A.
Parola
,
N. W.
Ashcroft
,
M. W.
Pestak
,
N. H. W.
Chan
,
J. R.
de Bruyn
, and
D. A.
Balzarini
,
Phys. Rev. Lett.
58
,
41
(
1987
).
47.
R. E.
Goldstein
and
A.
Parola
,
Phys. Rev. A
35
,
4770
(
1987
).
48.
M. W.
Pestak
,
R. E.
Goldstein
,
M. H. W.
Chan
,
J. R.
de Bruyn
,
D. A.
Balzarini
, and
N. W.
Ashcroft
,
Phys. Rev. B
36
,
599
(
1987
).
49.
R. E.
Goldstein
and
A.
Parola
,
J. Chem. Phys.
88
,
7059
(
1988
).
50.
R. E.
Goldstein
and
A.
Parola
,
Acc. Chem. Res.
22
,
77
(
1989
).
51.
B.
Guillot
,
Y.
Guissani
, and
S.
Bratos
,
J. Chem. Phys.
95
,
3643
(
1991
).
52.
F. J.
Wegner
,
Phys. Rev. B
5
,
4529
(
1972
).
53.
M.
Ley-Koo
and
M. S.
Green
,
Phys. Rev. A
23
,
2650
(
1981
).
54.
V. G.
Boïko
,
V. M.
Sisoev
, and
A. V.
Chalyi
,
Sov. Phys. JETP
70
,
472
(
1990
);
M. A.
Anisimov
,
S. B.
Kiselev
,
J. V.
Sengers
, and
S.
Tang
,
Physica
188
,
487
(
1992
).
55.
J. M. J.
Van Leeuwen
and
J. V.
Sengers
,
Physica A
132
,
207
(
1985
).
56.
K. K.
Mon
and
K.
Binder
,
J. Chem. Phys.
96
,
6989
(
1992
).
57.
J.
Verschaffelt
,
Commun. Lab. Phys. Univ. Leiden
28
,
1
(
1896
).
58.
R. R.
Singh
and
K. S.
Pitzer
,
J. Chem. Phys.
90
,
5742
(
1989
).
59.
K. S.
Pitzer
,
Pure and App. Chem.
61
,
979
(
1989
).
60.
D. A.
Goldhammer
,
Z. Phys. Chem.
71
,
577
(
1910
).
61.
E. A.
Guggenheim
,
J. Chem. Phys.
13
,
253
(
1945
).
62.
M. R.
Reddy
and
M.
Berkowitz
,
Chem. Phys. Lett.
155
,
173
(
1989
).
63.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Proc. R. Soc. London, Ser. A
388
,
177
(
1983
).
64.
Notice that at 300 K we obtain a value of 81.3 for SPCE water, a value very close to that obtained by one of us for SPC water (ε = 80 in Ref. 6). Although the statistical inaccuracies are large at room temperature we think that the difference between our value and that of Reddy and Berkowitz for SPCE water (ε = 70.7 in Ref. 62) could be attributed to their use of a reaction field geometry instead of an Ewald sum in our calculation. Thus for SPC water, two calculations made by different authors (Refs. 6 and 19) in similar conditions (Ewald sum) give very close results (ε = 80 in Ref. 6 and ε = 82.5 in Ref. 19), whereas these values are systematically larger than that obtained by Alper and Levy [
J. Chem. Phys.
91
,
1242
(
1989
)] using a reaction field geometry (ε = 68 in this case).
65.
K.
Heger
,
M.
Uematsu
, and
E. U.
Franck
,
Ber. Bunsenges. Phys. Chem.
84
,
758
(
1980
).
66.
A. K.
Soper
and
M. G.
Phillips
,
Chem. Phys.
107
,
47
(
1986
).
67.
R. D.
Mountain
,
J. Chem. Phys.
90
,
1866
(
1989
).
68.
J. L.
Finney
and
H. F. J.
Savage
,
Croatica Chem. Acta
64
,
371
(
1991
).
69.
Y. E.
Gorbaty
and
Y. N.
Demianets
,
Chem. Phys. Lett.
100
,
450
(
1983
);
Y. E.
Gorbaty
and
Y. N.
Demianets
,
Zh. Strukt. Khim.
23
,
73
(
1982
).
70.
A. H.
Narten
and
H. A.
Levy
,
J. Chem. Phys.
55
,
2263
(
1971
).
71.
H. E.
Stanley
and
J.
Texeira
,
J. Chem. Phys.
73
,
3404
(
1980
).
72.
A.
Geiger
,
F. H.
Stillinger
, and
A.
Rahman
,
J. Chem. Phys.
70
,
4185
(
1979
).
73.
K.
Krynicki
,
C. D.
Green
, and
D. W.
Sawyer
,
Faraday Discuss. Chem. Soc.
66
,
199
(
1978
).
74.
R.
Hausser
,
G.
Maier
and
F.
Noack
,
Z. Naturforsch. Teil A
21
,
1410
(
1966
).
75.
M. A.
Styrikovich
,
G. V.
Yukhnevich
,
A. A.
Vetrov
, and
A. A.
Vigasin
,
Sov. Phys. Dokl.
18
,
327
(
1973
).
76.
Yu. V.
Lisichkin
,
A. G.
Novikov
, and
N. K.
Fomichev
,
Russian J. Phys. Chem.
59
,
987
(
1985
).
77.
Recently R. D. Mountain (Ref. 67) has presented a related discussion for TIP4P water but in a different context. In particular the thermodynamic path investigated by this author does not coincide with the saturation line of TIP4P water and eventual correlations are uneasy to extract from these data.
This content is only available via PDF.
You do not currently have access to this content.