A new theoretical r0 structure for vinyl fluoride has been derived using abinitio molecular orbital procedures. In addition, new experimental r0 and rs structures have been obtained through a reanalysis of existing experimental microwave data. Significant discrepancies are found between the new theoretical (125.4°) and experimental (127.6°) r0 estimates of the CCHu angle involving the hydrogen atom geminal to the substituted center. This is attributed to the relative insensitivity of the experimental structural fits to the precise value of this bond angle, an insensitivity that is associated with the proximity of the relevant atoms to inertial axes. Because of these difficulties, the best estimate of the experimental r0 structure for vinyl fluoride is obtained by taking the theoretical r0 value for the CCHu angle and determining the remaining parameters by a weighted‐least‐squares fit to the experimental data. Weighted‐least‐squares fits are found generally to provide more consistency in the derived structural parameters than unweighted procedures. It is found that fitting of isotopic differences in rotational constants (as opposed to the conventional fitting of rotational constants themselves) provides the structure for vinyl fluoride most similar to the theoretical r0 structure. Similar observations are found to hold for vinyl alcohol, for which new theoretical and experimental results are presented.

1.
M.
Rodler
and
A.
Bauder
,
J. Am. Chem. Soc.
106
,
4025
(
1984
).
2.
W. J.
Bouma
and
L.
Radom
,
J. Mol. Struct.
43
,
267
(
1978
).
3.
S.
Marriot
and
R. D.
Topsom
,
J. Mol. Struct. (Theochem.)
139
,
101
(
1986
).
4.
C.
Plant
,
K.
Spencer
, and
J. N.
MacDonald
,
J. Mol. Struct.
140
,
317
(
1986
).
5.
B. J.
Smith
and
L.
Radom
,
J. Am. Chem. Soc.
112
,
7525
(
1990
).
6.
B.
Bak
,
D.
Christensen
,
L.
Hansen-Nygaard
, and
J.
Rastrup-Andersen
,
Spectrochim. Acta
13
,
120
(
1958
).
7.
H. W.
Morgan
and
J. H.
Goldstein
,
J. Chem. Phys.
30
,
1025
(
1959
).
8.
D. R.
Lide
, Jr.
and
D.
Christensen
,
Spectrochim. Acta
17
,
665
(
1961
).
9.
V. W.
Laurie
,
J. Chem. Phys.
34
,
291
(
1961
).
10.
J. L.
Carlos
,
R. R.
Karl
, and
S. H.
Bauer
,
J. Chem. Soc., Faraday Trans. 2
70
,
177
(
1974
).
11.
P. A. G.
Huisman
,
F. C.
Mijlhoff
, and
G. H.
Renes
,
J. Mol. Struct.
51
,
191
(
1979
).
12.
M.
Hayashi
and
T.
Inagusa
,
J. Mol. Spectrosc.
138
,
135
(
1989
).
13.
B. J.
Smith
,
L.
Radom
, and
A. J.
Kresge
,
J. Am. Chem. Soc.
111
,
8297
(
1989
).
14.
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
15.
M. J. Frisch, J. S. Binkley, H. B. Schlegel, K. Raghavachari, C. F. Melius, R. L. Martin, J. J. P. Stewart, F. W. Bobrowicz, C. M. Rohlfing, L. R. Kahn, D. J. DeFrees, R. Seeger, R. A. Whiteside, D. J. Fox, E. M. Fleuder, and J. A. Pople, GAUSSIAN 86 (Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh, 1984).
16.
M. J. Frisch, M. Head-Gordon, G. W. Trucks, J. B. Foresman, H. B. Schlegel, K. Raghavachari, M. A. Robb, J. S. Binkley, C. Gonzalez, D. J. DeFrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, S. Topiol, and J. A. Pople, GAUSSIAN 90 (Gaussian Inc., Pittsburgh, 1990).
17.
J. L.
Duncan
,
I. J.
Wright
, and
D.
Van Lerberghe
,
J. Mol. Spectrosc.
42
,
463
(
1972
).
18.
J. K.
Tyler
and
J.
Sheridan
,
Trans. Faraday Soc.
59
,
2661
(
1963
).
19.
F. A.
Andersen
,
B.
Bak
, and
S.
Brodersen
,
J. Chem. Phys.
24
,
989
(
1956
).
20.
W. W.
Clark
and
F. C.
DeLucia
,
J. Mol. Struct.
32
,
29
(
1976
).
21.
G.
Hafelinger
,
C. U.
Ragelmann
,
T. M.
Krygowski
, and
K.
Wozniak
,
J. Comput. Chem.
10
,
329
(
1989
).
22.
H. D.
Rudolph
,
Struct. Chem.
2
,
581
(
1991
).
23.
T.
Ijima
,
J. Mol. Struct.
212
,
137
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.