Dissociative‐ionization cross sections, fragment appearance potentials, and fragment kinetic energies were measured for electron‐impact excitation of jet‐cooled NH3, hydrazine (N2H4), and monomethyl hydrazine (MMH) over an energy range of 10–270 eV. A data base of 35 parent and fragment ions is reported. All measurements were made in a crossed electron–molecular beam apparatus using pulsed extraction and time‐of‐flight mass detection to ensure field‐free excitation and high collection efficiency for energetic ions. Cross sections for NH3 ionization are in good agreement with previous measurements except for ions with high kinetic energy (KE). These discrepancies are attributed to instrument‐dependent KE detection efficiencies in the previous results. Cross section data have not been previously reported for N2H4 and MMH. The measured cross sections for total ionization at 70 eV are 2.35 Å2 (NH3), 3.76 Å2 (N2H4), and 4.20 Å2 (MMH). KE distributions were measured by an ion deflection method and gave results consistent with time‐of‐flight peak‐shape analysis. Mean KE values <εt≳ are reported for all fragment ions studied. For 170‐eV excitation of NH3, <εt≳ varied from 0.026 eV (NH2+) to 1.4 eV (H+). The kinetic energies for N2H4 and MMH fragment ions at similar excitation energies are typically much lower than for fragment ions from NH3, conforming to statistical arguments based on density of internal states. High resolution mass spectra were recorded for MMH in order to distinguish different fragment ions of the same unit mass. Substantial rearrangement is evident for N2H4 and MMH dissociative ionization based on the appearance of ions such as NH3+ and NH4+ (the latter for MMH ionization only) and the magnitude of <εt≳ for certain ions. The role of electronic structure and geometry on dissociation is explored using a molecular orbital analysis to predict product correlations for the excited states of N2H4+.

1.
M.
Schürgers
and
K. H.
Welge
,
Z. Naturforsch. Teil A
23
,
1508
(
1968
);
H.
Biehl
and
F.
Stuhl
,
J. Photochem. Photobiol. A
59
,
135
(
1991
).
2.
V.
Staemmler
,
Acta Phys. Pol. A
74
,
331
(
1988
);
E. M.
Evleth
and
E.
Kassab
,
J. Am. Chem. Soc.
100
,
7859
(
1978
).
3.
C.
Willis
and
R. A.
Back
,
Can. J. Chem.
51
,
3605
(
1973
);
D. A.
Ramsey
,
J. Phys. Chem.
57
,
415
(
1953
);
G. S.
Chandler
and
A. D.
McLean
,
J. Chem. Phys.
71
,
2175
(
1979
).
4.
P.
Lindberg
,
D.
Raybone
,
J. A.
Salthouse
,
T. M.
Watkinson
, and
J. C.
Whitehead
,
Mol. Phys.
62
,
1297
(
1987
);
W. G.
Hawkins
and
P. L.
Houston
,
J. Phys. Chem.
86
,
704
(
1982
);
M.
Arvis
,
C.
Devillers
,
M.
Gillois
, and
M.
Curtat
,
J. Phys. Chem.
78
,
1356
(
1974
).,
J. Phys. Chem.
5.
J. A.
Syage
,
R. B.
Cohen
, and
J.
Steadman
,
J. Chem. Phys.
97
,
6072
(
1992
).
6.
K. H.
Becker
and
K. D.
Bayes
,
J. Phys. Chem.
71
,
371
(
1967
);
F. E.
Logan
and
J. M.
Marchello
,
J. Chem. Phys.
49
,
3929
(
1968
);
M. Gehring, K. Hoyermann, H. Schacke, and J. Wolfrum, 14th Symposium (Int.) on Combustion (The Combustion Institute, Pittsburgh, 1972), p. 99;
S. N.
Foner
and
R. L.
Hudson
,
J. Chem. Phys.
49
,
3724
(
1968
);
S. N.
Foner
and
R. L.
Hudson
,
53
,
4377
(
1970
).,
J. Chem. Phys.
7.
J. A.
Syage
,
Phys. Rev. A.
46
, (
1992
);
A.
Syage
,
J. Phys. B
24
,
L527
(
1991
).
8.
J. A.
Syage
,
J. Chem. Phys.
92
,
1804
(
1990
);
J. A.
Syage
and
J.
Steadman
,
Rev. Sci. Instrum.
61
,
1204
(
1990
);
J. A.
Syage
,
J. E.
Pollard
, and
J.
Steadman
,
Chem. Phys. Lett.
161
,
103
(
1989
).
9.
J. A.
Syage
,
Chem. Phys. Lett.
143
,
19
(
1988
).
10.
J. A. R.
Samson
,
G. N.
Haddad
, and
L. D.
Kilcoyne
,
J. Chem. Phys.
87
,
6416
(
1987
).
11.
G. R.
Wight
,
M. J.
Van der Wiel
, and
C. E.
Brion
,
J. Phys. B
10
,
1863
(
1977
).
12.
P. L.
Kronebusch
and
J.
Berkowitz
,
Int. J. Mass Spectrom. Ion Phys.
22
,
283
(
1976
);
K. E.
McCulloh
,
Int. J. Mass Spectrom. Ion Phys.
21
,
333
(
1976
).,
Int. J. Mass Spectrom. Ion Phys.
13.
J. W.
Rabalais
,
L.
Karlsson
,
L. O.
Werme
,
T.
Bergmark
, and
K.
Siegbahn
,
J. Chem. Phys.
58
,
3370
(
1973
).
14.
M. J.
Weiss
and
G. M.
Lawrence
,
J. Chem. Phys.
53
,
214
(
1970
);
G. R.
Branton
,
D. C.
Frost
,
F. G.
Herring
,
C. A.
McDowell
, and
I. A.
Stenhouse
,
Chem. Phys. Lett.
3
,
581
(
1969
);
A. W.
Potts
and
W. C.
Price
,
Proc. R. Soc. London, Ser. A.
326
,
181
(
1972
).
15.
T. J.
Xia
,
T. S.
Chien
,
C. Y.
Robert Wu
, and
D. L.
Judge
,
J. Quant. Spectrosc. Radiat. Transfer
45
,
77
(
1991
);
V. H.
Dibeler
,
J. A.
Walker
, and
H. M.
Rosenstock
,
J. Res. Natl. Bur. Stand. A
70
,
459
(
1966
);
K.
Watanabe
and
J. R.
Mottl
,
J. Chem. Phys.
26
,
1773
(
1957
);
K.
Watanabe
,
J. Chem. Phys.
22
,
1564
(
1954
).,
J. Chem. Phys.
16.
K.
Bederski
,
L.
Wójcik
, and
B.
Adamczyk
,
Int. J. Mass Spectrom. Ion Phys.
35
,
171
(
1980
).
17.
T. D.
Märk
,
F.
Egger
, and
M.
Cheret
,
J. Chem. Phys.
67
,
3795
(
1977
).
18.
A.
Crowe
and
J. W.
McConkey
,
Int. J. Mass Spectrom. Ion Phys.
24
,
181
(
1977
).
19.
J.
Gomet
,
C. R. Acad. Sci. Ser B
281
,
627
(
1975
).
20.
L. E.
Melton
,
J. Chem. Phys.
45
,
4414
(
1966
).
21.
M. M.
Mann
,
A.
Hustrulid
, and
J. T.
Tate
,
Phys. Rev.
58
,
340
(
1940
).
22.
R.
Locht
,
Ch.
Servais
,
M.
Ligot
,
Fr.
Derwa
, and
J.
Momigny
,
Chem. Phys.
123
,
443
(
1988
);
R.
Locht
,
Ch.
Servais
,
M.
Ligot
,
M.
Davister
, and
J.
Momigny
,
Chem. Phys.
125
,
425
(
1988
); ,
Chem. Phys.
R.
Locht
and
J.
Momigny
,
Chem. Phys.
127
,
435
(
1988
).,
Chem. Phys.
23.
D.
Morrison
and
J. C.
Traeger
,
Int. J. Mass Spectrom. Ion Phys.
11
,
277
(
1973
).
24.
B.
Ruscic
and
J.
Berkowitz
,
J. Chem. Phys.
95
,
4378
(
1991
).
25.
S. T.
Gibson
,
J. P.
Greene
, and
J.
Berkowitz
,
J. Chem. Phys.
83
,
4319
(
1985
).
26.
M. E.
Akopyan
and
F. I.
Vilesov
, Engl. trans.
Kinet. Catal.
4
,
32
(
1962
);
M. E.
Akopyan
,
F. I.
Vilesov
, and
A. N.
Terenin
,
Bull. Acad. Sci. USSR Phys. Ser.
27
,
1504
(
1963
).
27.
S. N.
Foner
and
R. L.
Hudson
,
J. Chem. Phys.
68
,
3162
(
1978
).
28.
V. H.
Dibeler
,
J. L.
Franklin
, and
R. M.
Reese
,
J. Am. Chem. Soc.
81
,
68
(
1959
).
29.
K.
Osafune
,
S.
Katsumata
, and
K.
Kimura
,
Chem. Phys. Lett.
19
,
369
(
1973
).
30.
N.
Bodor
,
M. J. S.
Dewar
,
W. B.
Jennings
, and
S. D.
Worley
,
Tetrahedron
26
,
4109
(
1970
);
S. F.
Nelsen
and
J. M.
Buschek
,
J. Am. Chem. Soc.
96
,
2392
(
1974
).
31.
D. C.
Frost
,
S. T.
Lee
,
C. A.
McDowell
,
N. P. C.
Westwood
,
J. Chem. Phys.
64
,
4719
(
1976
).
32.
C. LaLau, in Advances in Analytical Chemistry and Instrumentation, Vol 8, edited by A. L. Burlingame (Wiley, Newark, 1970) p. 93;
C. N.
Burrous
,
A. J.
Lieber
, and
V. T.
Zaviantseff
,
Rev. Sci. Instrum.
38
,
1477
(
1967
).
33.
T. D.
Märk
,
Z. Naturforsch. Teil A
32
,
1559
(
1977
).
34.
J. B.
Anderson
,
R. P.
Andres
, and
J. B.
Fenn
,
Adv. Chem. Phys.
10
,
275
(
1966
);
A.
Kantrowitz
and
J.
Grey
,
Rev. Sci. Instrum.
22
,
328
(
1951
).
35.
D. K.
Sen Sharma
and
J. L.
Franklin
,
Int. J. Mass Spectrom. Ion Phys.
13
,
139
(
1974
).
36.
J. H. Beynon and J. R. Gilbert, in Gas Phase Ion Chemistry, Vol. 2, edited by M. T. Bowers (Academic, New York, 1979), p. 153.
37.
D. M.
Mintz
and
T.
Baer
,
J. Chem. Phys.
65
,
2407
(
1976
);
S. M.
Penn
,
C. C.
Hayden
,
K. J.
Carlson Muyskens
, and
F. F.
Crim
,
J. Chem. Phys.
89
,
2909
(
1988
).,
J. Chem. Phys.
38.
J. L.
Franklin
,
P. M.
Hierl
, and
D. A.
Whan
,
J. Chem. Phys.
47
,
3148
(
1967
).
39.
W. J. Moore, Physical Chemistry, 4th ed. (Prentice-Hall, Englewood Cliffs, 1972), p. 130 ff.
40.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, New York, 1986), p. 381 ff.
41.
J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic, New York, 1979), p. 265–71.
42.
M. S.
Banna
,
H.
Kossman
, and
V.
Schmidt
,
Chem. Phys.
114
,
157
(
1987
).
43.
G.
Bieri
,
L.
Åsbrink
, and
W.
von Niessen
,
J. Electron Spectrosc.
27
,
129
(
1982
).
44.
A. W.
Potts
and
W. C.
Price
,
Proc. R. Soc. London, Ser. A
326
,
181
(
1972
).
45.
J. W. Rabalais, Principles of Ultraviolet Photoelectron Spectroscopy (Wiley, New York, 1977), p. 89.
46.
C.
Krier
,
M. Th.
Praet
, and
J. C.
Lorquet
,
J. Chem. Phys.
82
,
4073
(
1985
);
A. R.
Rossi
and
P.
Avouris
,
J. Chem. Phys.
79
,
3413
(
1983
); ,
J. Chem. Phys.
H.
Köppel
,
L. S.
Cederbaum
,
W.
Domcke
, and
W.
von Niessen
,
Mol. Phys.
35
,
1283
(
1978
).
47.
B. L.
Carnahan
,
W. W.
Kao
, and
E. C.
Zipf
,
J. Chem. Phys.
74
,
5149
(
1981
).
48.
J.
Kurawaki
and
T.
Ogawa
,
Chem. Phys.
86
,
295
(
1984
).
49.
Fragment ion K.E εt is related to center-of-mass (c.m.) KE εt,c.m. by the relation εt = εtc.m.[mn/(mi+mn)], where mi and mn are the ion and neutral fragment masses, respectively.
50.
N.
Ohashi
,
W. J.
Lafferty
, and
W. B.
Olson
,
J. Mol. Spectrosc.
117
,
119
(
1986
);
N.
Ohashi
and
J. T.
Hougen
,
J. Mol. Spectrosc.
112
,
384
(
1985
); ,
J. Mol. Spectrosc.
N.
Tanaka
,
Y.
Hamada
,
Y.
Sugawara
,
M.
Tsuboi
,
S.
Kato
, and
K.
Morokuma
,
J. Mol. Spectrosc.
99
,
245
(
1983
).,
J. Mol. Spectrosc.
51.
A. H.
Cowley
,
D. J.
Mitchell
,
M.-H.
Whangbo
, and
S.
Wolfe
,
J. Am. Chem. Soc.
101
,
5224
(
1979
);
L.
Radom
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Am. Chem. Soc.
94
,
2371
(
1972
); ,
J. Am. Chem. Soc.
L.
Pedersen
and
K.
Morokuma
,
J. Chem. Phys.
46
,
3941
(
1967
);
E. C.
Wagner
,
Theor. Chim. Acta
23
,
115
(
1971
).
52.
J. O.
Jarvie
and
A.
Rauk
,
Can. J. Chem.
52
,
2785
(
1974
);
J. O.
Jarvie
,
A.
Rauk
, and
C.
Edmiston
,
Can. J. Chem.
52
,
2778
(
1974
).,
Can. J. Chem.
53.
S. F.
Nelsen
,
S. C.
Blackstock
,
N. P.
Yumibe
,
T. B.
Frigo
,
J. E.
Carpenter
, and
Frank
Weinhold
,
J. Am. Chem. Soc.
107
,
143
(
1985
);
S. F.
Nelsen
,
Acc. Chem. Res.
14
,
131
(
1981
);
S. F.
Nelsen
,
G. R.
Weisman
,
P. J.
Hintz
,
D.
Olp
, and
M. R.
Fahey
,
J. Am. Chem. Soc.
96
,
2196
(
1974
).
54.
E.
Hayon
and
M.
Simic
,
J. Am. Chem. Soc.
94
,
42
(
1972
).
55.
W. H.
Fink
,
D. C.
Pan
, and
L. C.
Allen
,
J. Chem. Phys.
47
,
895
(
1967
).
56.
S. F.
Nelsen
,
M. R.
Willi
, and
T. B.
Frigo
,
J. Am. Chem. Soc.
106
,
7384
(
1984
);
S. F.
Nelsen
,
D. T.
Rumack
, and
M.
Meot-Ner
(Mautner),
J. Am. Chem. Soc.
110
,
7945
(
1988
);
M. Meot-Ner (Mautner).
57.
J. A.
Pople
and
L. A.
Curtiss
,
J. Chem. Phys.
95
,
4385
(
1991
).
58.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data
17
,
1
(
1988
).
59.
B. B. Brady and J. A. Syage (to be published).
60.
S. G.
Lias
,
J. F.
Liebman
, and
R. D.
Levin
,
J. Phys. Chem. Ref. Data
13
,
695
(
1984
).
61.
D. F.
McMillen
and
D. M.
Golden
,
Ann. Rev. Phys. Chem.
33
,
493
(
1982
), and references therein.
62.
Ref. 45, p. 99 ff.
63.
R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry (Academic, New York, 1970).
64.
T. L. Gilchrist and R. C. Storr, Organic Reactions and Orbital Symmetry (Cambridge University, Cambridge, 1970);
T. H. Lowry and K. S. Richardson, Mechanism and Theory of Organic Chemistry (Harper and Row, New York, 1976).
65.
T.
Drewello
,
C. B.
Lebrilla
,
H.
Schwarz
, and
D.
Stahl
,
Int J. Mass Spectrom. Ion Proc.
77
,
R3
(
1987
).
66.
R. J.
Crawford
and
K.
Takagi
,
J. Am. Chem. Soc.
94
,
7406
(
1972
);
S.
Seltzer
and
F. T.
Dunne
,
J. Am. Chem. Soc.
87
,
2628
(
1965
).,
J. Am. Chem. Soc.
This content is only available via PDF.
You do not currently have access to this content.