Molecular dynamics simulations have been used to investigate tilt transitions in a monolayer model of amphiphilic molecules at an air–water interface. Eight simulations were performed at 300 K on monolayers in the density range of 18.5–25 Å2/molecule. The model amphiphilic molecules contained 19 pseudoatoms, each representing a methyl or a methylene group, and a head group representing a carboxylate group. Amphiphile–amphiphile interactions were modeled using a new anisotropic united atom model that accounts implicitly for the presence of hydrogen atoms in alkanes; water–amphiphile interactions were modeled using two external potentials that do not constrain the head groups to the interface, allow methylene segments to enter the water, and provide a finite size interface of the same order of magnitude as the size of the experimental water–air interface. The tilt behavior of the monolayer was monitored as a function of molecular area. Tilt angle results and structure factor analysis point to the occurrence of a transition between 20 and 21 Å2/molecule from an almost upright to a tilted monolayer. At 21 and 22 Å2/molecule, the monolayers do not have a well‐defined tilt order. Upon monolayer expansion to 23 Å2/molecule, the molecules become tilted over their nearest neighbors.

1.
G. L. Gaines, Insoluble Monolayers at Liquid-Gas Interfaces (Inter-science, New York, 1966).
2.
See, e.g., C. M. Knobler, in Advances in Chemical Physics, edited by S. A. Rice, (Wiley, New York, 1988), p. 397.
3.
K.
Kjaer
,
J.
Als-Nielsen
,
C. A.
Helm
,
P.
Tippman-Krayer
, and
H.
Möhwald
,
J. Phys. Chem.
93
,
3200
(
1989
).
4.
T. M.
Böhanon
,
B.
Lin
,
M. C.
Shih
,
G. E.
Ice
, and
P.
Dutta
,
Phys. Rev. B
41
,
4846
(
1990
).
5.
B.
Lin
,
M. C.
Shih
,
T. M.
Bohanon
,
G. E.
Ice
, and
P.
Dutta
,
Phys. Rev. Lett.
65
,
191
(
1990
).
6.
D.
Jacquemain
,
F.
Leveiller
,
S. P.
Weinbach
,
M.
Lahav
,
L.
Leiserowitz
,
K.
Kjaer
, and
J.
Als-Nielsen
,
J. Am. Chem. Soc.
113
,
7684
(
1991
).
7.
R. M.
Kenn
,
C.
Böhm
,
A. M.
Bibo
,
I. R.
Peterson
,
H.
Möhwald
,
J.
Als-Nielsen
, and
K.
Kjaer
,
J. Phys. Chem.
95
,
2092
(
1991
).
8.
M. L.
Schlossman
,
D. K.
Schwartz
,
P. S.
Pershan
,
E. H.
Kawamato
,
G. J.
Kellog
, and
S.
Lee
,
Phys. Rev. Lett.
66
,
1599
(
1991
).
9.
J. P.
Bareman
,
G.
Cardini
, and
M. L.
Klein
,
Phys. Rev. Lett.
60
,
2152
(
1988
);
J. P.
Bareman
and
M. L.
Klein
,
J. Phys. Chem.
94
,
5202
(
1990
).
10.
J.
Harris
and
S. A.
Rice
,
J. Chem. Phys.
89
,
5898
(
1988
);
N.
Collazo
and
S. A.
Rice
,
Langmuir
7
,
3144
(
1991
).
11.
M.
Bishop
and
J. H. R.
Clarke
,
J. Chem. Phys.
95
,
540
(
1991
).
12.
M. A.
Moller
,
D. J.
Tildesley
,
K. S.
Kim
, and
N.
Quirke
,
J. Chem. Phys.
94
,
8390
(
1991
).
13.
S.
Karaborni
and
S.
Toxvaerd
,
J. Chem. Phys.
96
,
5505
(
1992
);
S.
Karaborni
and
S.
Toxvaerd
,
J. Phys. Chem.
96
,
4965
(
1992
).
14.
P.
van der Ploeg
and
H. J. C.
Berendsen
,
J. Chem. Phys.
76
,
3271
(
1982
);
P.
van der Ploeg
and
H. J. C.
Berendsen
,
Mol. Phys.
49
,
233
(
1983
).
15.
S.
Toxvaerd
,
J. Chem. Phys.
93
,
4290
(
1990
);
P.
Padilla
and
S.
Toxvaerd
,
J. Chem. Phys.
94
,
5650
(
1991
); ,
J. Chem. Phys.
P.
Padilla
and
S.
Toxvaerd
,
95
,
509
(
1991
).
16.
R.
Edberg
,
D. J.
Evans
, and
G. P.
Morriss
,
J. Chem. Phys.
84
,
6933
(
1986
).
17.
S.
Toxvaerd
,
Mol. Phys.
72
,
159
(
1991
).
18.
F. P.
Buff
,
Z. Elektrochem.
56
,
311
(
1952
).
19.
S.
Toxvaerd
,
J. Chem. Phys.
74
,
1998
(
1981
).
20.
M.
Lundquist
,
Chem. Scr.
1
,
5
(
1971
);
M.
Lundquist
,
1
,
197
(
1971
).
21.
S.
Ställberg-Stenhagen
and
E.
Stenhagen
,
Nature
156
,
239
(
1945
).
22.
A. M.
Bibo
,
C. M.
Knobler
, and
I. R.
Peterson
,
J. Phys. Chem.
95
,
5591
(
1991
);
A. M.
Bibo
,
C. M.
Knobler
, and
I. R.
Peterson
,
Makromol. Chem. Macromol. Symp.
46
,
55
(
1991
);
A. M.
Bibo
and
I. R.
Peterson
,
Adv. Mater.
2
,
309
(
1990
);
I. R.
Peterson
,
Ber. Bunsenges. Phys. Chem.
95
,
1417
(
1991
);
C. M.
Knobler
,
J. Phys. Condensed Matter
,
3
,
S17
(
1991
).
23.
J. J.
Benattar
,
J.
Daillant
,
L.
Bosio
, and
L.
Leger
,
Coll. Phys. C7
50
,
C7
39
(
1989
).
J. J.
Benattar
,
J.
Daillant
,
O.
Belorgey
, and
L.
Bosio
,
Phys. Status Solidi A
172
,
225
(
1991
).
24.
S. Karaborni, Langmuir (to be published).
25.
S. W.
Barton
,
A.
Goudot
,
O.
Bouloussa
,
F.
Rondelez
,
B.
Lin
,
F.
Novak
,
A.
Acero
, and
S. A.
Rice
,
J. Chem. Phys.
96
,
1343
(
1992
).
26.
S.
Shin
and
S. A.
Rice
,
J. Chem. Phys.
92
,
1495
(
1990
).
27.
T.
Kawai
,
J.
Umemura
, and
T.
Takenaka
,
Chem. Phys. Lett.
162
,
243
(
1989
).
28.
R. A.
Dluhy
,
J. Phys. Chem.
90
,
1373
(
1986
).
29.
M. C.
Shih
,
T. M.
Bohanon
,
J. M.
Mikrut
,
P.
Zschack
, and
P.
Dutta
,
J. Chem. Phys.
96
,
1556
(
1992
).
30.
Z.
Cai
and
S. A.
Rice
,
J. Chem. Phys.
90
,
6716
(
1989
);
Z.
Cai
and
S. A.
Rice
,
Faraday Discuss. Chem. Soc.
89
,
211
(
1990
).
31.
M.
Scheringer
,
R.
Hilfer
, and
K.
Binder
,
J. Chem. Phys.
96
,
2269
(
1992
).
32.
S.
Karaborni
and
J. P.
O’Connell
,
J. Phys. Chem.
94
,
2624
(
1990
);
S.
Karaborni
and
J. P.
O’Connell
,
Langmuir
6
,
911
(
1990
).
33.
F. A.
Vilallonga
,
R. J.
Koftan
, and
J. P.
O’Connell
,
J. Colloid Interface Sci.
90
,
539
(
1982
).
34.
A.
Braslau
,
P. S.
Pershan
,
G.
Swislow
,
B. M.
Ocko
, and
J.
Als-Nielsen
,
Phys. Rev. A
38
,
2457
(
1988
).
35.
R. M.
Townsend
and
S. A.
Rice
,
J. Chem. Phys.
94
,
2207
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.