This paper describes a systematic microscopic study of solute segregation and ordering at a grain boundary. We develop for this inhomogeneous system several Monte Carlo techniques and apply these to analyze the distribution of substitutional impurities near a symmetric coincident‐site‐lattice tilt boundary. The calculations demonstrate the importance of ensemble and boundary condition for a Monte Carlo simulation, especially one with an inhomogeneous lattice and with ordering, as opposed to segregating, bulk interactions. The resulting concentration profiles exhibit segregation to the boundary at high temperatures and bulk ordering at low temperature. Based on our results, we propose a mechanism for a solid–solid interfacial ordering phase transition previously suggested by experiment. We also compare these simulations to our earlier one‐dimensional mean‐field work and find that the three‐dimensional simulations confirm the essential mean‐field predictions.

1.
Interfacial Segregation, edited by W. C. Johnson and J. M. Blakely (Am. Soc. Metals, Metals Park, Ohio, 1977).
2.
J. B.
Vander Sande
,
A. J.
Garratt-Reed
,
Y.-M.
Chiang
, and
T.
Thorvaldsson
,
Ultramicrosc.
14
,
65
74
(
1984
);
A. J.
Garratt-Reed
,
Scanning Electron Microsc.
I
,
21
(
1985
).
3.
W. L.
Alba
and
K. B.
Whaley
,
J. Chem. Phys.
95
,
4427
(
1991
).
4.
For a collection of computer simulation techniques applied to solid-solid interfaces, see
Surf. Sci.
144
, (
1984
).
5.
See, for example,
A. P.
Sutton
and
V.
Vitek
,
Acta Metall.
30
,
2011
(
1982
);
J. T.
Wetzel
and
E. S.
Machlin
,
Surf. Sci.
144
,
124
(
1984
).
6.
S. -M.
Kuo
,
A.
Seki
,
Y.
Oh
, and
D. N.
Seidman
,
Phys. Rev. Lett.
65
,
199
(
1990
);
S. M.
Foiles
and
D. N.
Seidman
,
MRS Bull.
15
,
51
(
1990
).
7.
M.
Menyhard
,
B.
Blum
, and
C. J.
McMahon
, Jr.
,
Acta Metall.
37
,
549
(
1989
).
8.
J. P. Valleau, G. M. Torrie, and S. G. Whittington, in Statistical Mechanics, Part A, edited by B. Berne (Plenum, New York, 1977), Chap. 4 and 5.
9.
H. K. Chang, J. K. Lee, and D. F. Stein, in Interatomic Potentials and Crystalline Defects, edited by Jong K. Lee (Metallurgical Society of AIME, Warrendale, 1981), pp. 373–388;
H. K.
Chang
,
R. S.
Weidman
, and
J. K.
Lee
,
Surf. Sci.
144
,
224
(
1984
).
10.
K. Binder, in Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer, New York, 1986), pp. 1–45.
11.
R. J. Borg and G. J. Dienes, An Introduction to Solid State Diffusion (Academic, San Diego, 1988).
12.
L. A.
Girifalco
and
V. G.
Weizer
,
Phys. Rev.
114
,
687
(
1959
).
13.
A.
Fraczkiewicz
and
M.
Biscondi
,
J. Phys. (Paris)
46 C4
,
497
(
1985
).
14.
A.
Roy
,
U.
Erb
, and
H.
Gleiter
,
Acta Metall.
30
,
1847
(
1982
).
15.
P. H. Pumphrey, in Grain Boundary Structure and Properties, edited by G. A. Chadwick and D. A . Smith (Academic, San Francisco, 1976), pp. 139–200.
16.
D. J.
Chakabarti
and
D. E.
Laughlin
,
Bull. Alloy Phase Diagrams
5
,
148
,
203
(
1984
).
17.
T.
Beck
,
J.
Jellinek
, and
R. S.
Berry
,
J. Chem. Phys.
87
,
545
(
1987
);
H. L.
Davis
,
J.
Jellinek
, and
R. S.
Berry
,
J. Chem. Phys.
86
,
6456
(
1987
); ,
J. Chem. Phys.
J.
Jellinek
,
T.
Beck
, and
R. S.
Berry
,
J. Chem. Phys.
84
,
2783
(
1986
).,
J. Chem. Phys.
18.
K.
Binder
,
Z. Phys.
267
,
313
(
1974
).
19.
J. W. Christian, Theory of Transformations in Metals and Alloys (Pergamon, New York, 1965).
20.
J. M. Ziman, Models of Disorder (Cambridge University, Cambridge, 1979).
21.
For a review on segregation isotherms, see, for example, Adsorption on Metal Surfaces, edited by J. Bernard (Elsevier, New York, 1983) or
S.
Hofmann
,
Scanning Electron Microsc.
III
,
1071
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.