The excitation and ionization spectra of TiCl4 have been studied theoretically by the symmetry adapted cluster (SAC)/SAC‐CI and multireference CI (MRD‐CI) methods. The calculated spectra show good agreement with the observed spectra. The present results indicate several new assignments for the excitation spectrum. The peaks below 8.0 eV are assigned to valence excitations and those at 9.35 and 10.04 eV are assigned to Rydberg‐type excitations within chlorine ligands. The ordering of the ionized states in the outer valence region is (1t1)−1 < (3t2)−1 < (1e)−1 < (2t2)−1 < (2a1)−1, which supports the result of earlier Green’s function calculations.

1.
D. S.
Alderdice
,
J. Mol. Spectrosc.
15
,
509
(
1965
).
2.
C. A.
Becker
,
C. J.
Ballhausen
, and
I.
Trabjerg
,
Theor. Chim. Acta
13
,
355
(
1969
).
3.
C.
Dijkgraaf
and
J. P. G.
Rousseau
,
Spectrochim. Acta A
25
,
1831
(
1969
).
4.
A. A.
Iverson
and
B. R.
Russell
,
Spectrochim. Acta A
29
,
715
(
1973
).
5.
M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic, New York, 1975), Vol. 3, p. 383.
6.
J. C.
Green
,
M. L. H.
Green
,
P. J.
Joachim
,
A. F.
Orchard
, and
D. W.
Turner
,
Philos. Trans. R. Soc. London, Ser. A
268
,
111
(
1970
).
7.
R. G.
Egdell
,
A. F.
Orchard
,
D. R.
Lloyd
, and
N. V.
Richardson
,
J. Electron Spectrosc. Relat. Phenom.
12
,
415
(
1977
).
8.
R. G.
Egdell
and
A. F.
Orchard
,
J. Chem. Soc. Faraday Trans. 2
74
,
485
(
1978
).
9.
G. M.
Bancroft
,
E.
Pellach
, and
J. S.
Tse
,
Inorg. Chem.
21
,
2950
(
1982
).
10.
M. Lubcke, B. F. Sonntag, and H. E. Wetel, Conference Proceedings, International Conference on X-ray and Inner-Shell Processes in Atoms, Molecules, and Solids, edited by A. Meisel (Karl-Marx-Universitat, Leipzig, 1984), Abstracts Part I, p. 281.
11.
B.
Wallbank
,
J. S. H. Q.
Perera
,
D. C.
Frost
, and
C. A.
McDowell
,
J. Chem. Phys.
69
,
5405
(
1978
).
12.
(a)
J. A.
Tossell
,
Chem. Phys. Lett.
65
,
371
(
1979
);
(b)
A.
Gupta
and
J. A.
Tossell
,
J. Electron Spectrosc. Relat. Phenom.
26
,
223
(
1982
);
(c)
J. S.
Tse
,
Chem. Phys. Lett.
373
,
15
(
1981
).
13.
B. W.
Veal
,
K.
Lee
, and
D. E.
Ellis
,
Phys. Rev. A
37
,
1839
(
1988
).
14.
C. A. L.
Becker
and
J. P.
Dahl
,
Theor. Chim. Acta
14
,
26
(
1969
).
15.
T.
Parameswaran
and
D. E.
Ellis
,
J. Chem. Phys.
58
,
2088
(
1973
).
16.
S. S. L.
Surana
and
A.
Muller
,
Chem. Phys. Lett.
67
,
527
(
1979
).
17.
A.
Golebiewski
and
M.
Witko
,
Acta Phys. Pol. A
51
,
629
(
1977
).
18.
A. E.
Foti
,
V. H.
Smith
, Jr.
, and
M. A.
Whitehead
,
Mol. Phys.
45
,
385
(
1982
).
19.
A.
Golebiewski
and
M.
Witko
,
Acta Phys. Pol. A
57
,
585
(
1980
).
20.
S. A.
Titov
,
Teor. Eksp. Khim.
20
,
709
(
1984
).
21.
I. H.
Hillier
and
J.
Kendrick
,
Inorg. Chem.
15
,
520
(
1976
).
22.
W.
von Niessen
,
Inorg. Chem.
26
,
567
(
1987
).
23.
D. R.
Traux
,
J. A.
Geer
, and
T.
Ziegler
,
J. Chem. Phys.
59
,
6662
(
1973
).
24.
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
25.
H.
Nakatsuji
,
Chem. Phys. Lett.
59
,
362
(
1978
);
H.
Nakatsuji
,
67
,
329
,
334
(
1979
).,
Chem. Phys. Lett.
26.
H. Nakatsuji, Acta Chim. Acad. Sci. Hung, (in press).
27.
(a)
H.
Nakatsuji
,
J. Chem. Phys.
80
,
3703
(
1984
);
(b)
H.
Nakatsuji
,
O.
Kitao
, and
T.
Yonezawa
,
J. Chem. Phys.
83
,
723
(
1985
); ,
J. Chem. Phys.
(c)
H.
Nakatsuji
and
O.
Kitao
,
J. Chem. Phys.
87
,
1169
(
1987
); ,
J. Chem. Phys.
(d)
O.
Kitao
and
H.
Nakatsuji
,
Chem. Phys. Lett.
143
,
528
(
1988
).
28.
(a)
H.
Nakatsuji
and
S.
Saito
,
J. Chem. Phys.
93
,
1865
(
1990
);
(b)
H.
Nakatsuji
and
S.
Saito
,
Int. J. Quantum Chem.
39
,
93
(
1991
);
(c)
H.
Nakatsuji
,
M.
Sugimoto
, and
S.
Saito
,
Inorg. Chem.
29
,
3095
(
1990
).
29.
M. H.
Palmer
,
I. C.
Walker
,
M. F.
Guest
, and
A.
Hopkirk
,
Chem. Phys.
147
,
19
(
1990
).
30.
I. C.
Walker
and
M. H.
Palmer
,
Chem. Phys.
153
,
169
(
1991
).
31.
Y.
Morino
and
U.
Uehara
,
J. Chem. Phys.
45
,
4543
(
1966
).
32.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
33.
S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, and H. Tatewaki, Gaussian Basis Sets for Molecular Calculations (Elsevier, Amsterdam, 1984).
34.
C. E. Moore, U. S. Natl. Bur. Stand. Circ. No 467, Vol. I (1949).
35.
H.
Nakatsuji
,
Chem. Phys. Lett.
177
,
331
(
1991
).
36.
T. H. Dunning, Jr. and P. J. Hay, in Methods of Electronic Structure Theory, edited by H. F. Schaefer III (Plenum, New York, 1977).
37.
It was clear that one of the problems of MRD-CI was coupling of roots, often in groups of four, and that these were well separated in energy; extrapolation based upon only some members of the group led to perturbed energies, relative to those obtained when all members of the group were present. Hence it became imperative to expand the number of roots simultaneously determined in MRD-CI from 10 to 20. This caused extensive modification of the code, with major array expansions. A further problem with the MRD-CI method here, is the balancing of the reference set to obtain accurately degenerate roots for E and T states. In general, even with up to 70 main reference functions, it was not possible to obtain degenerate roots closer than about 0.1 eV, although this was sometimes reduced to 0.02 eV; the problem arises from the differing numbers of a1 and a2 MOs from b1 and b2, and is thus not capable of being exactly solved. In general this did not lead to problems of assignment; the result from the larger diagonalization is quoted in these circumstances. However, there are no such problems in SAC-CI and the degeneracy was kept to within 0.02 eV.
38.
M. Dupuis, J. D. Watts, H. O. Viller, and G. J. B. Hurst, Program System HONDO7, Program Library No. 544, Computer Center of the Institute for Molecular Science (1989).
39.
H. Nakatsuji, Program system for the SAC and SAC-CI calculations for ground, excited, ionized and electron-attached states of molecules, Program Library No. 146 (Y4/SAC), Data Processing Center of Kyoto University, 1985;
H. Nakatsuji, Program Library SAC85 (No. 1396), Computer Center of the Institute for Molecular Science, Okazaki, 1986.
40.
(a)
A. J. H.
Watchers
,
J. Chem. Phys.
52
,
1033
(
1970
);
(b)
D. M.
Hood
,
R. M.
Pitzer
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
71
,
705
(
1979
).,
J. Chem. Phys.
41.
(a) R. J. Buenker, in Proc. of the Workshop on Quantum Chemistry and Molecular Physics, Wollongong, Australia, 1980, edited by P. G. Burton (Wollongong University, Wollongong, 1980);
(b)
R. J.
Buenker
and
R. A.
Phillips
,
J. Mol. Struct. (THEOCHEM)
123
,
291
(
1985
).
42.
M. Dupuis, D. Spangler, and J. J. Wendoloski, NRCC Software Catalog, Vol. 1, GAMESS, Program QC01 (1980);
M. F. Guest and P. Sherwood, GAMESS User’s Guide and Reference Manual (SERC Daresbury Laboratory, 1991).
43.
H.
Nakatsuji
,
Theor. Chem. Acta.
71
,
201
(
1987
).
44.
H.
Nakatsuji
,
Chem. Phys.
75
,
425
(
1983
).
45.
H. G.
Dehmelt
,
J. Chem. Phys.
21
,
380
(
1953
).
46.
R. P.
Hamlen
and
W. S.
Koski
,
J. Chem. Phys.
25
,
360
(
1956
).
47.
E. A. C. Lucken, Nuclear Quadrupole Coupling Constants (Academic, London, 1969), Chap. 13, p. 308.
48.
W. L.
Jolly
,
Chem. Phys. Lett.
100
,
546
(
1983
).
49.
R. L.
Martin
and
D. A.
Shirley
,
J. Chem. Phys.
64
,
3685
(
1976
).
50.
V.
Subramanian
,
M.
Vijayakumar
, and
T.
Ramasami
,
Chem. Phys. Lett.
182
,
232
(
1991
).
51.
(a)
H.
Nakatsuji
,
Y.
Matsuzaki
, and
T.
Yonezawa
,
J. Chem. Phys.
88
,
5759
(
1988
);
(b)
C. A.
Masmanidis
,
H. H.
Jaffe
, and
R. L.
Ellis
,
J. Phys. Chem.
79
,
2052
(
1975
);
(c)
S.
Kato
,
R. L.
Jaffe
,
A.
Komornicki
, and
K.
Morokuma
,
J. Chem. Phys.
78
,
4567
(
1983
).
52.
T.
Shimanouchi
,
J. Phys. Chem. Ref. Data
6
,
993
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.