Very little is known about the structure and dynamics of the interface between liquid water and liquid 1,2‐dichloroethane (DCE), despite the fact that a molecular level understanding of this and similar interfaces is of fundamental importance for the proper interpretation of many studies of charge transfer at interfaces. Molecular dynamics calculations are used to show that the interface is molecularly sharp with capillary wavelike distortions whose structure and dynamics closely resemble those expected from the capillary wave model. Molecular level structural information such as pair correlation functions and hydrogen bonding statistics is also consistent with this picture. The orientation of water at the interface is similar to what is known at other water interfaces. The dynamics of water and DCE translational and rotational motion are only slightly modified at the interface. The DCE gauchetrans isomerization reaction is investigated at the interface and in the bulk. A continuum electrostatic model for the torsional potential of mean force is developed. Although this model can qualitatively account for the different conformational population in the bulk and at the interface, the difference is significantly overestimated.

1.
Faraday Discuss. Chem. Soc.
77
(
1984
).
2.
B. H.
Honig
,
W. L.
Hubbell
, and
R. F.
Flewelling
,
Ann. Rev. Biophys. Biophys. Chem.
15
,
163
(
1986
).
3.
The Interface Structure and Electrochemical Processes at the Boundary Between Two Immiscible Liquids, edited by V. E. Kazarinov (Springer, Berlin, 1987).
4.
Fluid Interfacial Phenomena, edited by C. A. Croxton (Wiley, New York, 1986).
5.
S. G.
Grubb
,
M. W.
Kim
,
Th.
Raising
, and
Y. R.
Shen
,
Langmuir
4
,
452
(
1988
).
6.
E. V.
Sitzmann
and
K. B.
Eisenthal
,
J. Phys. Chem.
92
,
4579
(
1988
).
7.
E. V.
Sitzmann
and
K. B.
Eisenthal
,
J. Chem. Phys.
90
,
2831
(
1989
).
8.
R. P.
Sperline
and
H.
Freiser
,
Langmuir
6
,
344
(
1990
).
9.
L. T.
Lee
,
D.
Langevin
, and
B.
Farnoux
,
Phys. Rev. Lett.
67
,
2678
(
1991
).
10.
P.
Linse
,
J. Chem. Phys.
86
,
4177
(
1987
).
11.
J.
Gao
and
W. L.
Jorgensen
,
J. Phys. Chem.
92
,
5813
(
1988
).
12.
M. Hayoun, M. Meyer, and M. Mareschal, in Chemical Reactivity in Liquids, edited by G. Ciccotti and P. Turq (Plenum, New York, 1987).
13.
M.
Meyer
,
M.
Mareschal
, and
M.
Hayoun
,
J. Chem. Phys.
89
,
1067
(
1988
).
14.
B.
Smit
,
Phys. Rev. A
37
,
3431
(
1988
).
15.
B.
Smit
,
P. A. J.
Hilbers
,
K.
Esselink
,
L. A. M.
Rupert
,
N. M.
van Os
, and
A. G.
Schlijper
,
J. Phys. Chem.
95
,
6361
(
1991
).
16.
I. L.
Carpenter
and
W. J.
Hehre
,
J. Phys. Chem.
94
,
531
(
1990
).
17.
I.
Benjamin
,
J. Phys. Chem.
95
,
6675
(
1991
).
18.
I.
Benjamin
,
J. Chem. Phys.
96
,
577
(
1992
).
19.
H. H. J. Girault and D. J. Schiffrin, in Electroanalytical Chemistry, edited by A. J. Bard (Dekker, New York, 1989), p. 1.
20.
Yu. I.
Kharkats
and
A. G.
Vol’kov
,
J. Electroanal. Chem.
184
,
435
(
1985
).
21.
M. A.
Hughes
and
V.
Rod
,
Faraday Discuss. Chem. Soc.
77
,
75
(
1984
).
22.
Y. Y.
Gurevich
and
Y. I.
Kharkats
,
J. Electroanal. Chem.
200
,
3
(
1986
);
Z.
Samec
,
Y. I.
Kharkats
, and
Y. Y.
Gurevich
,
J. Electroanal. Chem.
204
,
257
(
1986
).,
J. Electroanal. Chem. Interfacial Electrochem.
23.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
24.
S.
Nosé
,
Mol. Phys.
52
,
255
(
1984
).
25.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
26.
I.
Benjamin
,
J. Chem. Phys.
94
,
662
(
1991
).
27.
I.
Benjamin
,
J. Chem. Phys.
95
,
3698
(
1991
).
28.
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, in Intermolecular Forces, edited by B. Pullman (Reidel, Dordrecht, 1981), p. 331.
29.
K.
Kuchitsu
and
Y.
Morino
,
Bull. Chem. Soc. Jpn.
38
,
814
(
1965
).
30.
I. Benjamin and A. Pohorille (to be submitted).
31.
W. L.
Jorgensen
,
R. C.
Binning
, Jr.
, and
B. J.
Bigot
,
J. Am. Chem. Soc.
103
,
4393
(
1981
).
32.
W. L.
Jorgensen
,
J. Phys. Chem.
87
,
5304
(
1983
).
33.
C.
Millot
and
J. L.
Rivail
,
J. Mol. Liq.
43
,
1
(
1989
).
34.
J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic, London, 1986), p. 179.
35.
D.
Fincham
and
D. M.
Heyes
,
Chem. Phys.
78
,
425
(
1983
).
36.
E.
Spohr
,
J. Phys. Chem.
93
,
6171
(
1989
).
37.
J.
Hautman
and
M. L.
Klein
,
Mol. Phys.
75
,
379
(
1992
).
38.
J. D.
Weeks
,
J. Chem. Phys.
67
,
3106
(
1977
).
39.
J. K. Percus and G. O. Williams, in Fluid Interfacial Phenomena, edited by C. A. Croxton (Wiley, New York, 1986), p. 1.
40.
N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981), p. 24.
41.
F. P.
Buff
,
A. A.
Lovett
, and
F. H.
Stillinger
,
Phys. Rev. Lett.
15
,
621
(
1965
).
42.
J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982), p. 115.
43.
H. H. J.
Girault
,
D. J.
Schiffrin
,
B. D. V.
Smith
, and
J. Electroanal. Chem.
137
,
207
(
1982
).
44.
K. E. Gubbins, in Fluid Interfacial Phenomena, edited by C. A. Croxton (Wiley, New York, 1986), p. 477.
45.
For a recent review see, R. C. Desai and M. Grant, in Fluid Interfacial Phenomena, edited by C. A. Croxton (Wiley, New York, 1986), p. 135.
46.
W. G. Rothschild, Dynamics of Molecular Liquids (Wiley, New York, 1984).
47.
W. A.
Steele
,
Adv. Chem. Phys.
34
,
1
(
1976
).
48.
R. M. Lynden-Bell, in Molecular Liquids Dynamics and Interactions, edited by A. J. Barnes, W. J. Orville-Thomas, and J. Yarwood (Reidel, Dordrecht, 1984), p. 501.
49.
P. J.
Rossky
and
S. H.
Lee
,
Chem. Scripta A
29
,
93
(
1989
).
50.
The faster reorientation of the C‐C bond than that of the C‐Cl bond is consistent with the smaller moment of inertia of the former (calculated with respect to an axis perpendicular to the rotating bond).
51.
D.
Chandler
and
L. R.
Pratt
,
J. Chem. Phys.
65
,
2925
(
1976
);
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
); ,
J. Chem. Phys.
For more general reviews see, for example, J. T. Hynes, in The Theory of Chemical Reactions, Vol. 4, edited by M. Baer (CRC, Boca Raton, 1985);
B. J.
Berne
,
M.
Borkovec
and
J. E.
Straub
,
J. Phys. Chem.
92
,
3711
(
1988
).
52.
D. A.
Zichi
and
P. J.
Rossky
,
J. Chem. Phys.
84
,
1712
(
1986
).
53.
T. W.
Scott
,
J.
Liu
, and
C.
Doubleday
, Jr.
,
Chem Phys.
146
,
327
(
1990
).
54.
S. R.
Meech
and
K.
Yoshihara
,
Chem. Phys. Lett.
174
,
423
(
1990
).
55.
K.
Tanabe
,
Spectrochim. Acta A
28
,
407
(
1972
).
56.
M. A.
Wilson
,
A.
Pohorille
, and
L. R.
Pratt
,
Chem. Phys.
129
,
209
(
1989
).
57.
M. A.
Wilson
and
A.
Pohorille
,
J. Chem. Phys.
95
(
1991
).
58.
It is also possible to treat the DCE as a dipole whose magnitude depends on the torsional angle (as done in Ref. 52). This, however, neglects quadrupolar and higher moments which are included in the treatment presented here.
59.
R. A.
Marcus
,
J. Chem. Phys.
24
,
979
(
1956
).
60.
Yu. I.
Kharkats
and
J.
Ulstrup
,
Chem. Phys.
141
,
117
(
1990
).
61.
R. A.
Marcus
,
J. Phys. Chem.
94
,
1050
(
1990
).
62.
If we only keep the first order term of the exponential in Eq. (21) (which is a reasonable approximation), then the resulting integral can be calculated analytically in terms of elliptic functions.
63.
Y.
Shao
and
H. H.
Girauit
,
J. Electroanal. Chem.
282
,
59
(
1990
).
64.
D. A.
Rose
and
I.
Benjamin
,
J. Chem. Phys.
95
,
6856
(
1991
).
65.
I. Benjamin (to be submitted).
66.
A. M. Kuznetsov and Y. I. Kharkats, in The Interface Structure and Electrochemical Processes at the Boundary Between Two Immiscible Liquids, edited by V. E. Kazarinov (Springer, Berlin, 1987), p. 11.
67.
B. E. Conway, in The Liquid State and its Electrical Properties, edited by E. E. Kunhardt, L. G. Christophorou, and L. H. Luessen, Nato ASI Series B (Plenum, New York, 1988), Vol. 193.
68.
J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1963), p. 110.
69.
H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, 1950), p. 109.
This content is only available via PDF.
You do not currently have access to this content.