We provide a unified discussion of kinetic phase transitions for mean‐field and lattice–gas treatments of the monomer–dimer surface reaction. For high surface mobilities, kinetics is typically well described by mean‐field rate equations. These reveal bistability over a range of monomer adsorption rates which diminishes with increasing nonreactive monomer desorption rate d, and vanishes at some critical d=dc. Relative stability in the bistable region is determined from the behavior of chemical waves corresponding to the displacement of one stable state by the other. Their evolution is determined via appropriate reaction–diffusion equations. Conventional diffusion terms are modified here to reflect the influence of the presence of one species on diffusion of the other. We determine equistability (i.e., discontinuous transition) points for ddc, and thus construct a kinetic phase diagram including a spinodal line. For lower surface mobilities, analysis of lattice–gas models reveals qualitatively analogous behavior. The key difference is that for lower mobilities, spontaneous fluctuations are effective in automatically selecting the most stable state, i.e., in reducing metastability, and thus producing discontinuous transitions.

1.
L. F.
Razon
and
R. A.
Schmitz
,
Catal. Rev. Eng. Sci.
28
,
89
(
1986
).
2.
V. I.
Bykov
,
V. I.
Elokhin
, and
G. S.
Yablonskii
,
Kinet. Catal.
20
,
841
,
845
(
1979
);
V. I.
Bykov
and
G. S.
Yablonskii
,
Kinet. Catal.
18
,
1305
(
1977
).
3.
M.
Dumont
,
P.
Dufour
,
B.
Sente
, and
R.
Dagonnier
,
J. Catal.
122
,
95
(
1990
).
4.
P.
Fischer
and
U. M.
Titulaer
,
Surf. Sci.
221
,
409
(
1989
).
5.
J. W.
Evans
,
Langmuir
7
,
2514
(
1991
).
6.
R. M.
Ziff
,
E.
Gulari
, and
Y.
Barshad
,
Phys. Rev. Lett.
50
,
2553
(
1986
).
7.
P.
Meakin
and
D. J.
Scalapino
,
J. Chem. Phys.
87
,
2553
(
1987
);
K.
Yaldram
and
A.
Sadiq
,
J. Phys. A
22
,
L925
(
1989
);
D.
Ben-Avraham
,
Physica A
168
,
626
(
1990
);
D.
Ben-Avraham
,
S.
Redner
,
D. B.
Considine
, and
P.
Meakin
,
J. Phys. A
23
,
L613
(
1990
);
D.
Considine
,
H.
Takayasu
, and
S.
Redner
,
J. Phys. A
23
,
LI
181
(
1990
); ,
J. Phys. A
I.
Jensen
,
H. C.
Fogedby
, and
R.
Dick-man
,
Phys. Rev. A
41
,
3411
(
1990
);
B.
Yu
,
D. A.
Browne
, and
P.
Kleban
,
Phys. Rev. A
43
,
1770
(
1991
).,
Phys. Rev. A
8.
J. W.
Evans
and
M. S.
Miesch
,
Phys. Rev. Lett.
66
,
833
(
1991
).
9.
P.
Meakin
,
J. Chem. Phys.
93
,
2903
(
1990
).
10.
I.
Jensen
and
H. C.
Fogedby
,
Phys. Rev. A
42
,
1969
(
1990
).
11.
H. P.
Kaukonen
and
R. M.
Nieminen
,
J. Chem. Phys.
91
,
4380
(
1989
);
M.
Ehsasi
,
M.
Matloch
,
O.
Fink
,
J. H.
Block
,
K.
Christman
,
F. S.
Rye
, and
W.
Hirschwald
,
J. Chem. Phys.
91
,
4949
(
1989
).,
J. Chem. Phys.
12.
A. S. Mikhailov, Foundations of Synergetics I, Springer Series in Synergetics, Vol. 52 (Springer, Berlin, 1990).
13.
V. I. Arnold, Catastrophe Theory (Springer, Berlin, 1984).
14.
F.
Schlögl
,
Z. Phys.
253
,
147
(
1982
).
15.
R.
Dickman
,
Phys. Rev. A
34
,
4246
(
1986
).
16.
J. W.
Evans
and
M. S.
Miesch
,
Surf. Sci.
245
,
401
(
1991
).
17.
J. W.
Evans
,
Bull. Am. Phys. Soc.
37
,
179
(
1992
).
18.
A rigorous proof of this result would require a perturbation theorem from interacting particle systems theory. See, for example, T. M. Liggett, Interacting Particle Systems (Springer, New York, 1985). Such a theorem is currently not available.
19.
R. M. Ziff and B. J. Brosilow, Phys. Rev. A (in press);
T. Tome and R. Dickman (in preparation).
20.
T. Ray and J. W. Evans (in preparation).
21.
Clearly one cannot define ps− for d = 0 directly via analytic extension since the metastable state trivially has A = 1 One must take the limit of ps− values as d→0. In practice, “analytic extension” is achieved by suitable extrapolation of steady state values. More reliable estimates of spinodal points may be achieved by a scaling analysis of the kinetics near these points (see Ref. 16).
22.
P.
Grassberger
and
A.
De La Tore
,
Ann. Phys. (N.Y.)
122
,
373
(
1979
).
23.
J. W.
Evans
,
H. H.
Madden
, and
R.
Imbihl
,
J. Chem. Phys.
96
,
4805
(
1992
).
24.
K.
Krisher
,
M.
Eiswirth
, and
G.
ErtI
,
Surf. Sci.
251
,
900
(
1991
).
25.
M. Bar, M. Falcke, C. Zulicke, H. Engel, M. Eiswirth, and G. Ertl (to be published);
M. Bar, Ch. Zulicke, M. Eiswirth, and G. Ertl (to be published).
26.
Th.
Fink
,
J.-P.
Dath
,
R.
Imbihl
, and
G.
Ertl
,
J. Chem. Phys.
95
,
2109
(
1991
);
R.
Imbihl
,
Th.
Fink
, and
K.
Krisher
,
J. Chem. Phys.
96
,
6236
(
1992
).,
J. Chem. Phys.
27.
R.
Kutner
,
Phys. Lett. A
81
,
239
(
1981
);
J. W.
Evans
and
D. K.
Hoffman
,
Phys. Rev. B
30
,
2704
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.