A computational procedure, based on the K‐matrix technique, is presented to solve the random‐phase‐approximation equations for the description of excitations in the molecular electronic continuum using L2 basis functions. The proposed method has been applied to the calculation of the photoionization cross sections and asymmetry parameters of the three main valence ionization processes in H2O including the effect of the channel interaction. The comparison of the calculated quantities with the available experimental data shows a remarkable improvement for the integral cross sections as well as an amelioration of the angular distribution parameters with respect to the static‐exchange results previously obtained by a similar computational technique.

1.
Electron-Atom and Electron-Molecule Collisions, edited by J. Hinze (Plenum, New York, 1983), and references therein.
2.
I.
Cacelli
,
V.
Carravetta
,
A.
Rizzo
, and
R. Moccia Phys. Rep.
205
,
283
(
1991
), and references therein.
3.
P.
Swanstro/m
,
J. T.
Golab
,
D. L.
Yeager
, and
J. A.
Nichols
,
J. Chem. Phys.
110
,
339
(
1986
);
F.
Muller-Plathe
and
G.
Diercksen
,
Phys. Rev. A
40
,
696
(
1989
).
4.
I.
Cacelli
,
V.
Carravetta
, and
R.
Moccia
,
J. Chem. Phys.
85
,
7038
(
1986
), and references therein.
5.
D. J.
Rowe
,
Rev. Mod. Phys.
40
,
153
(
1968
).
6.
I.
Cacelli
,
V.
Carravetta
, and
R.
Moccia
,
Mol. Phys.
59
,
385
(
1986
).
7.
I.
Cacelli
,
V.
Carravetta
,
R.
Moccia
, and
A.
Rizzo
,
J. Phys. Chem.
92
,
979
(
1988
).
8.
I.
Cacelli
,
V.
Carravetta
, and
R.
Moccia
,
Chem. Phys.
120
,
51
(
1988
).
9.
G. R. J.
Williams
and
P. W.
Langhoff
,
Chem. Phys. Lett.
60
,
201
(
1979
).
10.
G. R. J.
Williams
and
P. W.
Langhoff
,
Chem. Phys. Lett.
78
,
21
(
1981
).
11.
P. W. Langhoff, in Electron-Molecule and Photon-Molecule Collisions, edited by T. N. Rescigno, B. V. McKoy, and B. Schneider (Plenum, New York, 1979), pp. 183–224.
12.
P. W.
Langhoff
and
C. T.
Corcoran
,
J. Chem. Phys.
61
,
146
(
1974
).
13.
P. W. Langhoff, in Theory and Application of Moment Methods in ManyFermions Systems, edited by B. J. Dalton, S. M. Grimes, J. P. Vary, and S. A. Williams (Plenum, New York, 1980), pp. 191–212.
14.
U.
Fano
,
Phys. Rev.
124
,
1866
(
1961
).
15.
K. H.
Tan
,
C. E.
Brion
,
Ph. E.
van der Leeuw
, and
M. J.
van der Wiel
,
Chem. Phys.
29
,
299
(
1978
).
16.
C. E.
Brion
and
F.
Carnovale
,
Chem. Phys.
100
,
291
(
1985
).
17.
C. M.
Truesdale
,
S.
Southworth
,
P. H.
Kobrin
,
D. W.
Lindle
,
G.
Thornton
, and
D. A.
Shirley
,
J. Chem. Phys.
76
,
860
(
1982
).
18.
M. S.
Banna
,
B. H.
McQuaide
,
R.
Malutzki
, and
V.
Schimdt
,
J. Chem. Phys.
84
,
4739
(
1986
).
19.
D. W. Turner, C. Baker, A. D. Baker, and R. C. Brundle, Molecular Photoelectron Spectroscopy (Wiley, New York, 1970).
20.
G. N.
Haddad
and
J. A. R.
Samson
,
J. Chem. Phys.
84
,
6623
(
1986
).
21.
D. H.
Katayama
,
R. E.
Huffman
, and
C. L.
O’Bryan
,
J. Chem. Phys.
59
,
4309
(
1973
).
22.
L.
de Reilhac
and
N.
Damany
,
J. Quant. Spectrosc. Radiat. Transfer
18
,
121
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.