The gradient geometry‐optimization procedure is reformulated in terms of redundant internal coordinates. By replacing the matrix inverse with the generalized inverse, the usual Newton–Raphson–type algorithms can be formulated in exactly the same way for redundant and nonredundant coordinates. Optimization in redundant coordinates is particularly useful for bridged polycyclic compounds and cage structures where it is difficult to define physically reasonable redundancy‐free internal coordinates. This procedure, already used for the geometry optimization of porphine, C20N4H14, is illustrated here at the abinitio self‐consistent‐field level for the four‐membered ring azetidine, for bicyclo[2.2.2]octane, and for the four‐ring system C16O2H22, the skeleton of taxol.

1.
H. B.
Schlegel
,
Adv. Chem. Phys.
67
,
249
(
1987
).
2.
P.
Pulay
,
Adv. Chem. Phys.
69
,
241
(
1987
).
3.
J. D.
Head
and
M. C.
Zerner
,
Chem. Phys. Lett.
122
,
264
(
1985
).
4.
J. D.
Head
,
B.
Weiner
, and
M. C.
Zerner
,
Int. J. Quantum Chem.
33
,
177
(
1988
).
5.
J. D.
Head
,
J. Comput. Chem.
11
,
67
(
1990
).
6.
J.
Baker
and
W. J.
Hehre
,
J. Comput. Chem.
12
,
606
(
1991
).
7.
P.
Pulay
,
G.
Fogarasi
,
F.
Pang
, and
J. E.
Boggs
,
J. Am. Chem. Soc.
101
,
2550
(
1979
).
8.
(a) G. Fogarasi, X. Zhou, P. W. Taylor, and P. Pulay, J. Am. Chem. Soc. (submitted);
(b)
P.
Pulay
,
G.
Fogarasi
,
X.
Zhou
, and
P. W.
Taylor
,
Vibr. Spectrosc.
1
,
159
(
1990
).
9.
See, e.g., W. J. Hehre, L. Radom, P. R. v. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory (Wiley, New York, 1986).
10.
E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw-Hill, New York, 1955).
11.
(a)
H. L.
Sellers
,
V. J.
Klimkowski
, and
L.
Schäfer
,
Chem. Phys. Lett.
58
,
541
(
1978
);
(b)
H. L.
Sellers
,
J. F.
Pinegar
, and
L.
Schäfer
,
Chem. Phys. Lett.
61
,
499
(
1979
).,
Chem. Phys. Lett.
12.
H. B.
Schlegel
,
Theor. Chim. Acta
66
,
333
(
1984
).
13.
C. E.
Blom
and
P.
Pulay
,
Mol. Phys.
39
,
1537
(
1980
).
14.
G. Fogarasi and P. Pulay, in Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier, Amsterdam, 1985), Vol. 14, p. 125.
15.
P. Pulay and co-workers, TX90, Fayetteville, Arkansas 1990;
P.
Pulay
,
Theor. Chim. Acta
50
,
299
(
1979
).
16.
M.
Eliashevich
,
C. r. Acad. Sci. U.R.S.S.
28
,
605
(
1940
).
17.
P.
Pulay
,
Mol. Phys.
17
,
197
(
1969
).
18.
See, e.g., W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, Cambridge, 1989),p. 52.
19.
P.
Csaszar
and
P.
Pulay
,
J. Mol. Struct.
114
,
31
(
1984
).
20.
See, e.g., R. Fletcher, Practical Methods of Optimization (Wiley, Chichester, 1980), Vol. 1.
21.
PCMODEL, Serena Software, Box 3076, Bloomington, IN 47402 (1990).
22.
M. C.
Wani
,
H. L.
Taylor
,
M. E.
Wall
,
P.
Coggon
, and
A. T.
McPhail
,
J. Am. Chem. Soc.
93
,
2325
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.