A novel discrete variable representation (DVR) is introduced for use as the L2 basis of the S‐matrix version of the Kohn variational method [Zhang, Chu, and Miller, J. Chem. Phys. 88, 6233 (1988)] for quantum reactive scattering. (It can also be readily used for quantum eigenvalue problems.) The primary novel feature is that this DVR gives an extremely simple kinetic energy matrix (the potential energy matrix is diagonal, as in all DVRs) which is in a sense ‘‘universal,’’ i.e., independent of any explicit reference to an underlying set of basis functions; it can, in fact, be derived as an infinite limit using different basis functions. An energy truncation procedure allows the DVR grid points to be adapted naturally to the shape of any given potential energy surface. Application to the benchmark collinear H+H2→H2+H reaction shows that convergence in the reaction probabilities is achieved with only about 15% more DVR grid points than the number of conventional basis functions used in previous S‐matrix Kohn calculations. Test calculations for the collinear Cl+HCl→ClH+Cl reaction shows that the unusual dynamical features of heavy+light‐heavy reactions are also well described by this approach. Since DVR approaches avoid having to evaluate integrals in order to obtain the Hamiltonian matrix and since a DVR Hamiltonian matrix is extremely sparse, this DVR version of the S‐matrix Kohn approach should make it possible to deal with more complex chemical reactions than heretofore possible.

1.
For recent reviews, (a)
D. E.
Manolopoulos
and
D. C.
Clary
,
Annu. Rep. C (R. Soc. Chem.)
86
,
95
(
1989
);
(b)
W. H.
Miller
,
Annu. Rev. Phys. Chem.
41
,
245
(
1990
).
2.
Also see the following papers and references to earlier work of the respective authors therein: (a)
M.
Zhao
,
D. G.
Truhlar
,
D. W.
Schwenke
,
C. H.
Yu
, and
D. J.
Kouri
,
J. Phys. Chem.
94
,
7062
(
1990
);
(b)
J. M.
Launay
,
Theor. Chem. Acta
79
,
183
(
1991
);
(c)
D. E.
Manolopoulos
,
R. E.
Wyatt
, and
D. C.
Clary
,
J. Chem. Soc. Faraday Trans.
86
,
1641
(
1990
);
(d)
Y. S.
Wu
,
S. A.
Cuccaro
,
P. G.
Hipes
, and
A.
Kuppermaann
,
Chem. Phys. Lett.
168
,
429
(
1990
);
(e)
G. C.
Schatz
,
J. Chem. Soc. Faraday Trans.
86
,
1729
(
1990
).
3.
(a)
W.
Kohn
,
Phys. Rev.
74
,
1763
(
1948
);
(b)
M.
Kamimura
,
Prog. Theor. Phys. Suppl.
62
,
236
(
1977
);
(c)
W. H.
Miller
and
B. M. D. D.
Jansen op de Haar
,
J. Chem. Phys.
86
,
6213
(
1987
);
(d)
J. Z. H.
Zhang
,
S.-I.
Chu
, and
W. H.
Miller
,
J. Chem. Phys.
88
,
6233
(
1988
).,
J. Chem. Phys.
4.
(a)
C.
Schwartz
,
Phys. Rev.
124
,
1468
(
1961
);
C.
Schwartz
,
Ann. Phys.
10
,
36
(
1961
);
(b)R. K. Nesbit, Variational Methods in Electron-Atom Scattering Theory (Plenum, New York, 1980), pp. 30–50.
5.
(a)
J. Z. H.
Zhang
and
W. H.
Miller
,
Chem. Phys. Lett.
153
,
465
(
1988
);
J. Z. H.
Zhang
and
W. H.
Miller
, (b)
159
,
130
(
1989
); ,
Chem. Phys. Lett.
J. Z. H.
Zhang
and
W. H.
Miller
, (c)
J. Chem. Phys.
91
,
1528
(
1989
);
(d)
D. E.
Manolopoulos
and
R. E.
Wyatt
,
Chem. Phys. Lett.
159
,
123
(
1989
);
D. E.
Manolopoulos
and
R. E.
Wyatt
, (e)
J. Chem. Phys.
91
,
6096
(
1989
);
(f)
M.
D’Mello
,
D. E.
Manolopoulos
, and
R. E.
Wyatt
,
J. Chem. Phys.
94
,
5985
(
1991
); ,
J. Chem. Phys.
(g)
J. M.
Launay
and
M.
LeDourneuf
,
Chem. Phys. Lett.
163
,
178
(
1989
);
(h)
M.
Zhao
,
D. G.
Truhlar
,
D. W.
Schwenke
, and
D. J.
Kouri
,
J. Phys. Chem.
94
,
7074
(
1990
);
(i)
N. C.
Blais
,
M.
Zhao
,
D. G.
Truhlar
,
D. W.
Schwenke
, and
D. J.
Kouri
,
Chem. Phys. Lett.
166
,
11
(
1990
).
6.
J. Z. H.
Zhang
,
Chem. Phys. Lett.
181
,
63
(
1991
).
7.
(a)
K.
Haug
,
D. W.
Schwenke
,
D. G.
Truhlar
,
Y.
Zhang
,
Z. H.
Zhang
, and
D. J.
Kouri
,
J. Chem. Phys.
87
,
1892
(
1987
);
(b)
J. Z. H.
Zhang
,
D. J.
Kouri
,
K.
Haug
,
D. W.
Schwenke
,
Y.
Shima
, and
D. G.
Truhlar
,
J. Chem. Phys.
88
,
2492
(
1988
); ,
J. Chem. Phys.
(c)H. Koizumi and G. C. Schatz, in Molecular Vibrations, edited by J. M. Bowman and M. Ratner (JAI, Greenwich, CT, 1991);
(d)
Y. C.
Zhang
,
J. Z. H.
Zhang
,
D. J.
Kouri
,
K.
Haug
,
D. W.
Schwenke
, and
D. G.
Truhlar
,
Phys. Rev. Lett.
60
,
2367
(
1988
).
8.
(a)
T. N.
Rescigno
,
C. W.
McCurdy
, and
B. I.
Schneider
,
Phys. Rev. Lett.
63
,
248
(
1989
);
(b)
T. N.
Rescigno
,
B. H.
Lengsfield
III
, and
C. W.
McCurdy
,
Phys. Rev. A
41
,
2462
(
1990
);
(c)
B. I.
Schneider
,
T. N.
Rescigno
, and
C. W.
McCurdy
,
Phys. Rev. A
42
,
3132
(
1990
); ,
Phys. Rev. A
(d)
B. I.
Schneider
,
T. N.
Rescigno
,
B. H.
Lengsfield
III
, and
C. W.
McCurdy
,
Phys. Rev. Lett.
66
,
2728
(
1991
).
9.
(a)
Z.
Bacic
and
J. C.
Light
,
J. Chem. Phys.
85
,
4594
(
1986
);
Z.
Bacic
and
J. C.
Light
,
86
,
3065
(
1987
); ,
J. Chem. Phys.
(b)
J. Z. H.
Zhang
and
W. H.
Miller
,
J. Phys. Chem.
94
,
7785
(
1990
);
(c)
D. E.
Manolopoulos
,
M.
D’Mello
, and
R. E.
Wyatt
,
J. Chem. Phys.
93
,
403
(
1990
);
(d)
M.
Zhao
,
D. G.
Truhlar
,
D. W.
Schwenke
,
C.h.
Yu
, and
D. J.
Kouri
,
J. Phys. Chem.
94
,
7062
(
1990
).
10.
For example, (a)
J. M.
Bowman
,
J. Phys. Chem.
95
,
4960
(
1991
);
(b)
D. C.
Clary
,
J. Chem. Phys.
95
,
7298
(
1991
).
11.
(a)
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
,
Chem. Phys. Lett.
89
,
483
(
1982
);
(b)
J. C.
Light
,
I. P.
Hamiltonian
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
);
(c)
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
,
J. Chem. Phys.
85
,
900
(
1986
); ,
J. Chem. Phys.
(d)
S. E.
Choi
and
J. C.
Light
,
J. Chem. Phys.
92
,
2129
(
1990
); ,
J. Chem. Phys.
(e)
J. C.
Light
,
R. M.
Whitnell
,
T. J.
Park
, and
S. E.
Choi
,
NATO ASI Ser. C
277
,
187
(
1989
).
12.
(a)
D. O.
Harris
,
G. G.
Engerholm
, and
W. D.
Gwinn
,
J. Chem. Phys.
43
,
1515
(
1965
);
(b)
P. F.
Endres
,
J. Chem. Phys.
47
,
798
(
1967
); ,
J. Chem. Phys.
(c)
A. S.
Dickinson
and
P. R.
Certain
,
J. Chem. Phys.
49
,
4209
(
1968
).
13.
(a)
W.
Yang
and
A. C.
Peet
,
Chem. Phys. Lett.
153
,
98
(
1988
);
(b)
A. C.
Peet
and
W.
Yang
,
J. Chem. Phys.
90
,
1746
(
1989
);
A. C.
Peet
and
W.
Yang
, (c)
92
,
522
(
1990
).,
J. Chem. Phys.
14.
(a)
R. A.
Friesner
,
Chem. Phys. Lett.
116
,
39
(
1985
);
R. A.
Friesner
, (b)
J. Chem. Phys.
85
,
1462
(
1986
);
R. A.
Friesner
, (c)
86
,
3522
(
1987
); ,
J. Chem. Phys.
(d)
Y.
Won
,
J. G.
Lee
,
M. N.
Ringnalda
, and
R. A.
Friesner
,
J. Chem. Phys.
94
,
8152
(
1991
).,
J. Chem. Phys.
15.
(a)
C. J.
Lanczos
,
J. Res. Natl. Bur. Stand.
45
,
255
(
1950
);
(b)
G. C.
Groenenboom
and
H. M.
Buck
,
J. Chem. Phys.
92
,
4374
(
1990
).
16.
(a)
A. C.
Peet
and
W. H.
Miller
,
Chem. Phys. Lett.
149
,
257
(
1988
);
(b)
W.
Yang
,
A. C.
Peet
, and
W. H.
Miller
,
J. Chem. Phys.
91
,
7537
(
1989
).
17.
(a)
R.
Kosloff
,
J. Phys. Chem.
92
,
2087
(
1988
), and references to earlier work therein;
(b)
C.
Leforestier
,
R. H.
Bisseling
,
C.
Cerjan
,
M. O.
Feit
,
R.
Friesner
,
A.
Guldberg
,
A.
Hammerich
,
G.
Jolicard
,
W.
Karrlein
,
H. D.
Meyer
,
N.
Lipkin
,
O.
Roncero
, and
R.
Kosloff
,
J. Comp. Phys.
94
,
59
(
1991
).
18.
D. T. Colbert and W. H. Miller (unpublished work).
19.
(a)
D. K.
Bondi
,
J. N. L.
Connor
,
J.
Manz
, and
J.
Romelt
,
Mol. Phys.
50
,
467
(
1983
);
(b)
D. K.
Bondi
,
J. N. L.
Connor
,
B. C.
Garret
, and
D. G.
Truhlar
,
J. Chem. Phys.
78
,
5981
(
1983
).
20.
The product of sines gives 1/2cos (nA)−1/2cos (nB) with A = π(i−i′)/N and B = π(i+i′)/N and then Σn = 1N−1n2cos(nA) = −(∂2/∂A2)ReΣn = 1N−1einA and similarly for the B term. The latter sum is a geometric series, which gives ReΣn = 1N−1einA = −1/2+1/2 sin[(N−1/2)A]/sin(A/2) and it is then clear how the calculation proceeds.
21.
R.
Meyer
,
J. Chem. Phys.
52
,
2053
(
1970
).
22.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1964) Number 25.2.2, p. 878.
This content is only available via PDF.
You do not currently have access to this content.