We use time‐, wavelength‐, temperature‐, polarization‐resolved luminescence to elucidate the nature of the absorbing and ‘‘band edge’’ luminescing states in 32 Å diameter wurtzite CdSe quantum crystallites. Time‐resolved emission following picosecond size‐selective resonant excitation of the lowest excited state shows two components—a temperature insensitive 100 ps component and a microsecond, temperature sensitive component. The emission spectrum, showing optic phonon vibrational structure, develops a ∼70 wave number red shift as the fast component decays. Photoselection shows the slow component to be reverse polarized at 10 K, indicating this component to be the result of a hole radiationless transition. The 100 ps emitting state is repopulated thermally as temperature increases from 10 to 50 K. All available data are interpreted by postulating strong resonant mixing between a standing wave molecular orbital delocalized inside the crystallite and intrinsic surface Se lone pair states. The apparent exciton transition is assigned to a ∼130 wave number wide band of eigenstates with the hole localized principally on the surface. The band contains strongly emitting ‘‘doorway’’ states and weakly emitting ‘‘background’’ states. The hole becomes mobile among these states as T increases to 50 K. It is suggested that such resonant mixing may be general in II–VI and III–V crystallites.

1.
A recent quantum mechanical review is
M. G.
Bawendi
,
M. L.
Steigerwald
, and
L. E.
Brus
,
Annu. Rev. Phys. Chem.
41
,
477
(
1990
).
A general review of QC photochemistry is
A.
Henglein
,
Top. Current Chem.
143
,
113
(
1988
).
2.
A. P.
Alivisatos
,
A.
Harris
,
N.
Levinos
,
M.
Steigerwald
, and
L. E.
Brus
,
J. Chem. Phys.
89
,
4001
(
1988
).
3.
A. P.
Alivisatos
,
T. D.
Harris
,
P. J.
Carroll
,
M. L.
Steigerwald
, and
L. E.
Brus
,
J. Chem. Phys.
90
,
3463
(
1989
).
4.
P.
Roussignol
,
D.
Ricard
,
C.
Flytzanis
, and
N.
Neuroth
,
Phys. Rev. Lett.
62
,
312
(
1989
).
5.
D.
Ricard
,
P.
Roussignol
,
F.
Hache
, and
C.
Flytzanis
,
Phys. Status Solidi B
159
,
275
(
1990
).
6.
N.
Peyghambarian
,
B.
Fluegel
,
D.
Hulin
,
A.
Migus
,
M.
Joffre
,
A.
Antonetti
,
S. W.
Koch
, and
M.
Lindberg
,
IEEE J. Quantum Electron.
25
,
2516
(
1989
).
7.
Y. Z.
Hu
,
S. W.
Koch
,
M.
Lindberg
,
N.
Peyghambarian
,
E. L.
Pollack
, and
F.
Abraham
,
Phys. Rev. Lett.
64
,
1805
(
1990
).
8.
V.
Esch
,
B.
Fluegel
,
G.
Khitrova
,
H. M.
Gibbs
,
X.
Jiajin
,
K.
Chang
,
S. W.
Koch
,
L. C.
Liu
,
S. W.
Risbud
, and
N.
Peyghambarian
,
Phys. Rev. B
42
,
7450
(
1990
).
9.
M.
O’Neil
,
J.
Marohn
, and
G.
McLendon
,
J. Phys. Chem.
94
,
4356
(
1990
).
10.
E.
Hilinski
,
P.
Lucas
, and
Y.
Wang
,
J. Chem. Phys.
89
,
3435
(
1989
).
11.
Y.
Wang
,
A.
Suna
,
J.
McHugh
,
E.
Hilinski
,
P.
Lucas
, and
R. D.
Johnson
,
J. Chem. Phys.
92
,
6927
(
1990
).
12.
T.
Inokuma
,
T.
Arai
, and
M.
Ishikawa
,
Phys. Rev. B
42
,
11093
(
1990
).
13.
A.
Eychmuller
,
A.
Hasserlbarth
,
L.
Katsikas
, and
H.
Weller
,
Ber. Bunseges. Phys. Chem.
95
,
79
(
1991
).
14.
K.
Misawa
,
H.
Yao
,
T.
Hayashi
, and
T.
Kobayashi
,
J. Chem. Phys.
94
,
4131
(
1991
).
15.
M. G.
Bawendi
,
A. R.
Kortan
,
M. L.
Steigerwald
, and
L. E.
Brus
,
J. Chem. Phys.
91
,
2782
(
1989
).
16.
M. G.
Bawendi
,
W. L.
Wilson
,
L.
Rothberg
,
P. J.
Carroll
,
T. M.
Jedju
,
M. L.
Steigerwald
, and
L. E.
Brus
,
Phys. Rev. Lett.
65
,
1623
(
1990
).
17.
M. L.
Steigerwald
,
A. P.
Alivisatos
,
J. M.
Gibson
,
T. D.
Harris
,
A. R.
Kortan
,
A. J.
Muller
,
A. M.
Thayer
,
T. M.
Duncan
,
D. C.
Douglass
, and
L. E.
Brus
,
J. Am. Chem. Soc.
110
,
3046
(
1988
).
18.
A. R.
Kortan
,
R.
Hull
,
R. L.
Opila
,
M. G.
Bawendi
,
M. L.
Steigerwald
,
P. J.
Carroll
, and
L. E.
Brus
,
J. Am. Chem. Soc.
112
,
1327
(
1990
).
19.
A. C.
Albrecht
,
J. Mol. Spectrosc.
64
,
376
(
1961
).
20.
For example, see
A. J.
Cross
and
G. R.
Fleming
,
Biophys. J.
46
,
45
(
1984
).
21.
W. A. Harrison, Electronic Structure (Freeman, San Francisco, 1980).
22.
J. B.
Xia
,
Phys. Rev. B
40
,
8500
(
1989
).
23.
G. B.
Grigoryan
,
E. M.
Kazaryan
,
Al. A.
Efros
, and
T. V.
Yazeva
,
Sov. Phys. Solid State
32
,
1031
(
1990
).
24.
J. J.
Hopfield
,
Phys. Chem. Solids
15
,
97
(
1960
).
25.
R. G.
Wheeler
and
J. O.
Dimmock
,
Phys. Rev.
125
,
1805
(
1962
).
26.
Al. A. Efros (private communication).
27.
D. Braun, W. W. Ruhle, and J. Collet, in Springer Series in Chemical Physics, edited by C. B. Harris, E. P. Ippen, G. A. Mourou, and A. H. Zewail (Springer, Berlin, 1990), Vol. 7, p. 271.
28.
Y. R.
Wang
and
C. B.
Duke
,
Phys. Rev. B
37
,
6417
(
1988
).
29.
T. N.
Horsky
,
G. R.
Bandes
,
K. F.
Canter
,
C. B.
Duke
,
S. F.
Hornig
,
A.
Kahn
,
D. E.
Lessor
,
A. P.
Mills
, Jr.
,
A.
Paton
,
K.
Stevens
, and
K.
Stiles
,
Phys. Rev. Lett.
62
,
1876
(
1989
).
30.
C. B.
Duke
,
D. E.
Lessor
,
T. N.
Horsky
,
G.
Brandes
,
K. F.
Canter
,
P. H.
Lippel
,
A. P.
Mills
, Jr.
,
A.
Paton
, and
Y. R.
Wang
,
J. Vac. Sci. Technol. A
7
,
2030
(
1989
).
31.
C. B.
Duke
and
Y. R.
Wang
,
J. Sci. Vac. Technol. B
7
,
1027
(
1989
).
32.
S. Mukamel and J. Jortner, in Excited States, edited by E. Lim (Academic, New York, 1977), Vol. 3, pp. 58–105.
33.
N.
Chestnoy
,
T. D.
Harris
,
R.
Hull
, and
L. E.
Brus
,
J. Phys. Chem.
90
,
3393
(
1986
).
34.
A.
Fojtik
,
H.
Weller
,
U.
Koch
, and
A.
Henglein
,
Ber. Bunsenges. Phys. Chem.
88
,
969
(
1984
).
35.
H.
Carstensen
,
R.
Claessen
,
R.
Manzke
, and
M.
Skibowski
,
Phys. Rev. B
41
,
9880
(
1990
).
36.
C. B.
Duke
and
Y. R.
Wang
,
J. Vac. Sci. Technol. B
6
,
1440
(
1988
).
37.
C. A.
Swarts
,
T. C.
McGill
, and
W. A.
Goddard
III
,
Surf. Sci.
110
,
400
(
1981
).
38.
R.
Chang
and
W. A.
Goddard
III
,
Surf. Sci.
144
,
311
(
1984
).
39.
S. B.
Zhang
and
M. L.
Cohen
,
Surf. Sci.
172
,
754
(
1986
).
40.
R. P.
Beres
,
R. E.
Allen
, and
J. D.
Dow
,
Solid State Commun.
45
,
13
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.