The inverted regime photoinduced electron transfer kinetics of betaine‐30 have been investigated over a broad temperature range, revealing very little temperature dependence. For example, for betaine‐30 in a polystyrene film, the electron transfer rate constant, kET, changes by less than a factor of 3 from T=293 K to T=34 K. The results are in striking contrast to predictions of contemporary electron transfer theories which employ classical nuclear modes to accept some or all of the energy of the electron transfer event. The comparison of theory and experiment for the betaines demonstrates that a full quantum mechanical theory is necessary to accurately describe the electron transfer kinetics of the betaines in environments with slow dielectric relaxation. The conclusions drawn for the betaines may also apply to other molecular examples of invertedregime electron transfer in slowly relaxing environments.

1.
G. L.
Closs
and
J. R.
Miller
,
Science
240
,
440
(
1988
);
G. L.
McLendon
,
Acc. Chem. Res.
21
,
160
(
1988
);
R. A.
Marcus
and
N.
Sutin
,
Biochem. Phys. Acta
811
,
265
(
1985
);
M. D.
Newton
and
N.
Sutin
,
Annu. Rev. Phys. Chem.
35
,
437
(
1984
).
2.
For recent reviews and well referenced papers that discuss the role of solvation dynamics in ET see
P. F.
Barbara
and
W.
Jarzeba
,
Adv. Photochem.
15
,
1
(
1990
);
M.
Maroncelli
,
J.
MacInnis
, and
G. R.
Fleming
,
Science
243
,
1674
(
1989
);
J. D.
Simon
,
Acc. Chem. Res.
21
,
128
(
1988
);
M. J.
Weaver
and
G. E.
McManis
III
,
Acc. Chem. Res.
23
,
294
(
1990
); ,
Acc. Chem. Res.
J. T.
Hynes
,
J. Phys. Chem.
90
,
3701
(
1986
).
3.
J.
Jortner
and
M.
Bixon
,
J. Chem. Phys.
88
,
167
(
1988
).
4.
R. P.
Van Duyne
and
R. S.
Fisher
,
Chem. Phys.
5
,
183
(
1974
);
V. G.
Levich
and
R. R.
Doganadze
,
Dokl. Akad. Nauk SSSR
133
,
158
(
1960
);
N. R.
Kestner
,
J.
Logan
, and
J.
Jortner
,
J. Phys. Chem.
78
,
2148
(
1974
);
S. F.
Fisher
and
R. P.
Van Duyne
,
Chem. Phys.
26
,
9
(
1977
);
P.
Siders
and
R. A.
Marcus
,
J. Am. Chem. Soc.
103
,
748
(
1981
);
R. A.
Marcus
,
J. Chem. Phys.
81
,
4494
(
1984
).
5.
H.
Sumi
and
R. A.
Marcus
,
J. Phys. Chem.
84
,
4894
(
1986
);
W.
Nadler
and
R. A.
Marcus
,
J. Chem. Phys.
86
,
3906
(
1987
).
6.
E.
Åkesson
,
G. C.
Walker
, and
P. F.
Barbara
,
J. Chem. Phys.
95
,
4188
(
1991
).
7.
A. M.
Kjaer
and
J.
Ulstrup
,
J. Am. Chem. Soc.
109
,
1934
(
1987
).
8.
(a) C. Reichardt, Molecular Interactions, Vol. 3, edited by H. Ratajczak and W. J. Orville-Thomas (Wiley, New York, 1982);
(b)
K.
Dimroth
,
C.
Reichardt
,
T.
Siepmann
, and
F.
Bohlmann
,
Justus Liebigs Ann. Chem.
661
,
1
(
1963
);
(c)
C.
Reichardt
,
Angew. Chem. Int. Ed. Engl.
18
,
98
(
1979
).
9.
N.
Liang
,
J. R.
Miller
, and
G. L.
Closs
,
J. Am. Chem. Soc.
112
,
5353
(
1990
).
10.
I. R.
Gould
,
R. H.
Young
,
R. E.
Moody
, and
S.
Farid
,
J. Phys. Chem.
95
,
2068
(
1991
).
11.
G. C. Walker, E. Åkesson, A. E. Johnson, N. E. Levinger, and P. F. Barbara, J. Phys. Chem. (in press).
12.
M. A.
Kahlow
,
W.
Jarzeba
,
T. P.
DuBruil
, and
P. F.
Barbara
,
Rev. Sci. Instrum.
59
,
1098
(
1988
).
13.
(a)
T. J.
Kang
,
W.
Jarzeba
,
P. F.
Barbara
, and
T.
Fonseca
,
Chem. Phys.
149
,
81
(
1990
);
(b) G. C. Walker, K. Tominaga, and P. F. Barbara (unpublished) C(t) results on GTA solvation measured using the linear wavelength with coumarin 153 at 293 K.
(c)
V.
Nagarajan
,
A. M.
Brearley
,
T. J.
Kang
, and
P. F.
Barbara
,
J. Chem. Phys.
86
,
3183
(
1987
);
(d)
U. V.
Khudayarov
and
V. N.
Khuderberdyev
,
Russ. J. Phys. Chem.
64
,
1015
(
1990
);
(e)
A. M.
Ras
and
P.
Bordewijk
,
Rec. Trav. Chim.
90
,
1055
(
1971
);
(f)
E.
Ikada
and
T.
Watanabe
,
J. Phys. Chem.
78
,
1078
(
1974
).
14.
P.
Avouris
,
W. M.
Gelbart
, and
M. A.
El-Sayed
,
Chem. Rev.
77
,
793
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.