Amorphous solid D2O from hexagonal and cubic ices and H2O from (HF, NH3, and NH4F) doped hexagonal ice have been prepared by Whalley’s method, and their thermal behavior has been investigated by differential scanning calorimetry from 103 to 250 K. For a heating rate of 30 K min−1 , the temperature of the onset of the reversible glass■liquid transition, Tg, is raised by about 4 K when H2O is substituted by D2O. Doping with NH3 and NH4F causes little change in Tg but with HF Tg becomes undetectable. The increase in heat capacity at Tg is reduced by about a factor of 3 on deuteration but marginal changes occur on doping with NH3 or NH4F. The increase in Tg on deuteration is ≊4 times of that observed for the amorphous forms made from the vapor and the liquid, and more than twice of that expected from isoviscous or isorelaxational states, assuming that the functional form of the molecular reorientation rates with temperature is unaffected by isotopic substitution. NH3 and NH4F as dopants, which generally increase the reorientation rate of water molecules in hexagonal and cubic ices, have no detectable effect on the calorimetric relaxation rate of the pressure‐amorphized forms, thus indicating that the increase in the concentration of Bjerrum defects for these two dopants does not alter Tg. All these observations suggest that the structure of pressure‐amorphized solids is topologically different from that of the amorphous forms made from the vapor and the liquid.

1.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature
310
,
393
(
1984
);
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
314
,
76
(
1985
).,
Nature
2.
E. Whalley, in Water and Aqueous Solutions, edited by G. W. Neilson and J. E. Enderby, Colston Papers 37 (Hilger, Bristol, United Kingdom, 1986), p. 105;
J. Less, Common Metals
140
,
361
(
1988
).
3.
A.
Bizid
,
L.
Bosio
,
A.
Defrain
, and
M.
Oumezzine
,
J. Chem. Phys.
87
,
2225
(
1987
).
4.
M.-C.
Bellissent-Funel
,
J.
Teixeira
, and
L.
Bosio
,
J. Chem. Phys.
87
,
2231
(
1987
).
5.
R. J.
Hemley
,
A. P.
Jephcoat
,
H. K.
Mao
,
L. C.
Ming
, and
M. H.
Manghnani
,
Nature
334
,
52
(
1988
).
6.
A.
Hallbrucker
,
E.
Mayer
, and
G. P.
Johari
,
J. Phys. Chem.
93
,
7751
(
1989
).
7.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
J. Phys. Chem.
94
,
1212
(
1990
).
8.
D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford, Clarendon, 1969).
9.
G. P.
Johari
and
S. J.
Jones
,
Proc. R. Soc. London, Ser. A
349
,
467
(
1976
).
10.
S. R.
Gough
and
D. W.
Davidson
,
J. Chem. Phys.
52
,
5442
(
1970
).
11.
G. P.
Johari
and
E.
Whalley
,
J. Chem. Phys.
75
,
1333
(
1981
).
12.
A.
Hallbrucker
and
E.
Mayer
,
J. Chem. Soc. Faraday Trans.
86
,
3785
(
1990
).
13.
Y. P.
Handa
,
O.
Mishima
, and
E.
Whalley
,
J. Chem. Phys.
84
,
2766
(
1986
).
14.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
Nature
330
,
552
(
1987
).
15.
A.
Hallbrucker
,
E.
Mayer
, and
G. P.
Johari
,
Philos. Mag. B
60
,
179
(
1989
).
16.
A.
Hallbrucker
,
E.
Mayer
, and
G. P.
Johari
,
J. Phys. Chem.
93
,
4986
(
1989
).
17.
V. R.
Parameswaran
and
S. J.
Jones
,
J. Glaciol.
14
,
305
(
1975
).
18.
C. A.
Angell
,
Annu. Rev. Phys. Chem.
34
,
593
(
1988
).
19.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
J. Chem. Phys.
92
,
6742
(
1990
).
20.
P. V. Hobbs, Ice Physics (Clarendon, Oxford, 1974).
21.
G. W.
Gross
,
C.
Wu
,
L.
Bryant
, and
C.
McKee
,
J. Chem. Phys.
62
,
3085
(
1975
).
22.
J. P.
Devlin
,
Int. Rev. Phys. Chem.
9
,
29
(
1990
).
23.
M. H.
Cohen
and
D.
Turnbull
,
J. Chem. Phys.
31
,
1164
(
1959
).
24.
D.
Turnbull
and
M. H.
Cohen
,
J. Chem. Phys.
34
,
120
(
1961
);
D.
Turnbull
and
M. H.
Cohen
,
52
,
3038
(
1970
).,
J. Chem. Phys.
25.
L.
Bosio
,
G. P.
Johari
, and
J.
Teixeira
,
Phys. Rev. Lett.
56
,
460
(
1986
).
26.
See, for example, the summary of vitreous SiO2 by N. J. Kreidl, in Glass, Science, and Technology, edited by D. R. Uhlmann and N. J. Kreidl (Academic, New York, 1983), Vol. 1, Chap. 3, p. 109.
27.
M.
Sugisaki
,
H.
Suga
, and
S.
Seki
,
Bull. Chem. Soc. Jpn.
41
,
2591
(
1968
).
28.
O.
Haida
,
T.
Matsuo
,
H.
Suga
, and
S.
Seki
,
J. Chem. Thermodyn.
6
,
815
(
1974
).
29.
O.
Haida
,
H.
Suga
, and
S.
Seki
,
J. Glaciol.
22
,
155
(
1979
).
30.
Y.
Tajima
,
T.
Matsuo
, and
H.
Suga
,
Nature (London)
299
,
810
(
1982
).
31.
Y.
Tajima
,
T.
Matsuo
, and
H.
Suga
,
J. Phys. Chem. Solids
45
,
1135
(
1984
).
32.
T.
Matsuo
,
Y.
Tajima
, and
H.
Suga
,
J. Phys. Chem. Solids
47
,
165
(
1986
).
33.
T.
Matsuo
and
H.
Suga
,
J. Phys. (Paris)
C1-48
,
477
(
1987
).
34.
K.
Hofer
,
A.
Hallbrucker
,
E.
Mayer
, and
G. P.
Johari
,
J. Phys. Chem.
93
,
4674
(
1989
).
35.
A. J.
Leadbetter
,
R. C.
Ward
,
J. W.
Clark
,
P. A.
Tucker
,
T.
Matsuo
, and
H.
Suga
,
J. Chem. Phys.
82
,
424
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.