Both CD2OH and CD3O were prepared insitu by the reaction of F atoms with CD3OH, and studied by photoionization mass spectrometry. The adiabatic ionization potential (I.P.) of CD2OH was found to be 7.540±0.006 eV, in good agreement with the photoelectron spectroscopy (PES) value, 7.55±0.01 eV. However, the adiabatic I.P. of CD3O was determined to be 10.726±0.008 eV, in marked contrast to the PES value for CH3O, 7.37±0.03 eV, but in the expected range based on reported values of ΔH0f(CH3O+) and ΔH0f(CH3O). From selected values of ΔH0f0(CH2OH+) ≤172.0±0.7 kcal/mol and ΔH0f0(CH3O) =5.9±1.0 kcal/mol, we deduce ΔH0f0(CH2OH) ≤−2.1±0.7 kcal/mol and ΔH0f0(CH3O+) =253.1±1.0 kcal/mol.

1.
Oxidation of Organic Compounds, Vols. I—III in Advances in Chemistry Series (American Chemical Society, Washington, D.C., 1968).
2.
K. L.
Demerjian
,
J. A.
Kerr
, and
J. G.
Calvert
,
Adv. Environ. Sci. Technol.
4
,
1
(
1974
).
3.
J. Heicklen, Atmospheric Chemistry (Academic, New York, 1976).
4.
Chemical Kinetic Data Needs for Modeling the Lower Troposphere, Natl. Bur. Stand. (U.S.) Spec. Publ. 557, edited by J. T. Herron, R. E. Huie, and J. A. Hodgeson (U.S. GPO, Washington, D.C., 1979).
5.
T.
Amano
and
H. E.
Warner
,
Astrophys. J.
342
,
L99
(
1989
).
6.
C. S.
Dulcey
and
J. W.
Hudgens
,
J. Chem. Phys.
84
,
5262
(
1986
).
7.
D. S.
Bomse
,
S.
Dougal
, and
R. L.
Woodin
,
J. Phys. Chem.
90
,
2640
(
1986
).
8.
P.
Pagsberg
,
J.
Munk
,
A.
Sillesen
, and
C.
Anastasi
,
Chem. Phys. Lett.
146
,
375
(
1988
).
9.
G. R.
Long
,
R. D.
Johnson
, and
J. W.
Hudgens
,
J. Phys. Chem.
90
,
4901
(
1986
).
10.
S. C.
Foster
,
P.
Misra
,
Y-T. D.
Lin
,
C. P.
Damo
,
C. C.
Carter
, and
T. A.
Miller
,
J. Phys. Chem.
92
,
5914
(
1988
).
11.
X.
Liu
,
C. P.
Damo
,
Y-T. D.
Lin
,
S. C.
Foster
,
P.
Misra
,
L.
Yu
, and
T. A.
Miller
,
J. Phys. Chem.
93
,
2266
(
1989
).
12.
J.
Kappert
and
F.
Tanys
,
Chem. Phys.
132
,
197
(
1989
).
13.
A.
Geers
,
J.
Kappert
,
F.
Temps
, and
J. W.
Wiebrecht
,
J. Chem. Phys.
93
,
1472
(
1990
).
14.
K. M. A.
Refaey
and
W. A.
Chupka
,
J. Chem. Phys.
48
,
5205
(
1968
).
15.
S. G.
Lias
,
J. F.
Liebman
, and
R. D.
Levin
,
J. Phys. Chem. Ref. Data
13
,
695
(
1984
).
16.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data
17
, Suppl.
1
(
1988
).
17.
Lias et al. (Ref. 15, p. 701) obtain P.A.(CH2O) = 171.7 kcal/mol by taking ΔP.A.(CH2OH2O) = 5.2 kcal/mol from
K.
Tanaka
,
G. I.
Mackay
, and
D.
Bohme
,
Can. J. Chem.
56
,
193
(
1978
), and their standard, P.A.(H2O) = 166.5±2 kcal/mol. However, Tanaka, Mackay, and Bohme actually give 4.5 kcal/mol for ΔP.A. Furthermore, Tanaka, Mackay, and Bohme prefer P.A.(CH2O) as a standard, based on the appearance potential of CH2OH+ from CH3OH already discussed (Ref. 14). Additional confusion is introduced for ΔHf0(CH2OH+), since Tanaka, Mackay, and Bohme appear to use the thermal electron convention, while Lias et al. (Ref. 16) use the stationary electron convention. If one takes ΔHf2980(CH2OH+) = −26.0 kcal/mol and ΔHf2980(H+) = −365.7 kcal/mol from Ref. 16, one obtains P.A.(CH2O) = 169.5 or 169.4 kcal/ mol. Tanaka, Mackay, and Bohme appear to have combined a stationary electron convention value for ΔHf2980(CH2OH+) with a thermal electron convention value for ΔHf2980(H+) = 367.2 kcal/mol to obtain (CH2O) = 170.9±1.2 kcal/mol.
18.
D. F.
McMillen
and
D. M.
Golden
,
Annu. Rev. Phys. Chem.
33
,
493
(
1982
).
19.
D. M.
Golden
and
S. W.
Benson
,
Chem. Rev.
69
,
125
(
1969
).
20.
F. R.
Cruickshank
and
S. W.
Benson
,
J. Phys. Chem.
73
,
733
(
1969
).
21.
E.
Buckley
and
E.
Whittle
,
Trans. Faraday Soc.
58
,
536
(
1962
).
22.
V. P. Glushko, L. V. Gurvich, G. A. Bergman, I. V. Veitz, V. A. Medredev, G. A. Khachkuruzov, and V. C. Yungman, Termodinamicheskie Cvoistva Individual’nikh Veshchestv (Nauka, Moscow, 1978 and 1979), Vols. 1 and 2.
23.
M.
Nonella
and
J. R.
Huber
,
Chem. Phys. Lett.
131
,
376
(
1986
).
24.
O.
Benoist D’Azy
,
F.
Lahmani
,
C.
Lardeux
, and
D.
Solgadi
,
Chem. Phys.
94
,
247
(
1985
).
25.
L.
Batt
,
K.
Christie
,
R. T.
Milne
, and
A. J.
Summers
,
Int. J. Chem. Kinet.
6
,
877
(
1974
).
26.
L. D.
Batt
and
R. T.
Milne
,
Int. J. Chem. Kinet.
6
,
945
(
1974
).
27.
R.
Silverwood
and
J. H.
Thomas
,
Trans. Faraday Soc.
63
,
2476
(
1967
).
28.
L.
Batt
and
R. D.
McCulloch
,
Int. J. Chem. Kinet.
8
,
491
(
1976
).
29.
S.
Saebo/
,
L.
Radom
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
78
,
845
(
1983
).
30.
S. M.
Colwell
,
Theor. Chim. Acta
74
,
123
(
1988
).
31.
L. A.
Curtiss
,
D.
Kock
, and
J. A.
Pople
,
J. Chem. Phys.
95
,
4040
(
1991
).
32.
L.
Batt
,
J. P.
Burrows
, and
G. N.
Robinson
,
Chem. Phys. Lett.
78
,
467
(
1981
).
33.
P. C.
Burgers
and
J. L.
Holmes
,
Org. Mass Spectrom.
19
,
452
(
1984
).
34.
E. E.
Ferguson
,
J.
Roncin
, and
L.
Bonazzola
,
Int. J. Mass Spectrom. Ion Proc.
79
,
215
(
1987
).
35.
J. M.
Dyke
,
A. R.
Ellis
,
N.
Jonathan
,
N.
Keddar
, and
A.
Morris
,
Chem. Phys. Lett.
111
,
207
(
1984
).
36.
J. M.
Dyke
,
J. Chem. Soc. Faraday Trans. 2
83
,
69
(
1987
).
37.
J. A.
McCaulley
,
N.
Kelly
,
M. F.
Golde
, and
F.
Kaufman
,
J. Phys. Chem.
93
,
1014
(
1989
).
38.
M. Kol, S. Rozen, and E. Appelman, J. Am. Chem. Soc. (submitted).
39.
E. H. Appelman (privatecommunication).
40.
S. T.
Gibson
,
J. P.
Greene
, and
J.
Berkowitz
,
J. Chem. Phys.
83
,
4319
(
1985
);
J.
Berkowitz
,
J. P.
Greene
,
H.
Cho
, and
B.
Ruscic
,
J. Chem. Phys.
86
,
1235
(
1987
).,
J. Chem. Phys.
41.
M.-H.
Whangbo
,
S.
Wolfe
, and
F.
Bernardi
,
Can. J. Chem.
53
,
3040
(
1975
).
42.
T.
Momosa
,
Yu.
Endo
,
E.
Hirota
, and
T.
Shida
,
J. Chem. Phys.
88
,
5338
(
1988
).
43.
G.
Inoue
,
H.
Akimoto
, and
M.
Okuda
,
J. Chem. Phys.
72
,
1769
(
1980
).
44.
G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand, Princeton, NJ, 1950), p. 457.
45.
C. F.
Jackels
,
J. Chem. Phys.
76
,
505
(
1982
).
46.
W. J.
Bouma
,
R. H.
Nobes
, and
L.
Radom
,
Org. Mass Spectrom.
17
,
315
(
1982
).
47.
K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, and S. Iwata, Handbook of He I Photoelectron Spectra of Fundamental Organic Molecules (Japan Scientific Societies, Tokyo and Halsted, New York, 1981), p. 141.
48.
J.
Berkowitz
,
J. Chem. Phys.
69
,
3044
(
1978
).
49.
J. D.
Dill
,
C. L.
Fischer
, and
F. W.
McLafferty
,
J. Am. Chem. Soc.
101
,
6531
(
1979
).
50.
B. Ruscic, E. Appelman, and J. Berkowitz, J. Chem. Phys. (submitted).
This content is only available via PDF.
You do not currently have access to this content.