Both CD2OH and CD3O were prepared in situ by the reaction of F atoms with CD3OH, and studied by photoionization mass spectrometry. The adiabatic ionization potential (I.P.) of CD2OH was found to be 7.540±0.006 eV, in good agreement with the photoelectron spectroscopy (PES) value, 7.55±0.01 eV. However, the adiabatic I.P. of CD3O was determined to be 10.726±0.008 eV, in marked contrast to the PES value for CH3O, 7.37±0.03 eV, but in the expected range based on reported values of ΔH0f(CH3O+) and ΔH0f(CH3O). From selected values of ΔH0f0(CH2OH+) ≤172.0±0.7 kcal/mol and ΔH0f0(CH3O) =5.9±1.0 kcal/mol, we deduce ΔH0f0(CH2OH) ≤−2.1±0.7 kcal/mol and ΔH0f0(CH3O+) =253.1±1.0 kcal/mol.
REFERENCES
1.
Oxidation of Organic Compounds, Vols. I—III in Advances in Chemistry Series (American Chemical Society, Washington, D.C., 1968).
2.
K. L.
Demerjian
, J. A.
Kerr
, and J. G.
Calvert
, Adv. Environ. Sci. Technol.
4
, 1
(1974
).3.
J. Heicklen, Atmospheric Chemistry (Academic, New York, 1976).
4.
Chemical Kinetic Data Needs for Modeling the Lower Troposphere, Natl. Bur. Stand. (U.S.) Spec. Publ. 557, edited by J. T. Herron, R. E. Huie, and J. A. Hodgeson (U.S. GPO, Washington, D.C., 1979).
5.
6.
7.
D. S.
Bomse
, S.
Dougal
, and R. L.
Woodin
, J. Phys. Chem.
90
, 2640
(1986
).8.
P.
Pagsberg
, J.
Munk
, A.
Sillesen
, and C.
Anastasi
, Chem. Phys. Lett.
146
, 375
(1988
).9.
G. R.
Long
, R. D.
Johnson
, and J. W.
Hudgens
, J. Phys. Chem.
90
, 4901
(1986
).10.
S. C.
Foster
, P.
Misra
, Y-T. D.
Lin
, C. P.
Damo
, C. C.
Carter
, and T. A.
Miller
, J. Phys. Chem.
92
, 5914
(1988
).11.
X.
Liu
, C. P.
Damo
, Y-T. D.
Lin
, S. C.
Foster
, P.
Misra
, L.
Yu
, and T. A.
Miller
, J. Phys. Chem.
93
, 2266
(1989
).12.
13.
A.
Geers
, J.
Kappert
, F.
Temps
, and J. W.
Wiebrecht
, J. Chem. Phys.
93
, 1472
(1990
).14.
15.
S. G.
Lias
, J. F.
Liebman
, and R. D.
Levin
, J. Phys. Chem. Ref. Data
13
, 695
(1984
).16.
S. G.
Lias
, J. E.
Bartmess
, J. F.
Liebman
, J. L.
Holmes
, R. D.
Levin
, and W. G.
Mallard
, J. Phys. Chem. Ref. Data
17
, Suppl. 1
(1988
).17.
Lias et al. (Ref. 15, p. 701) obtain by taking from
K.
Tanaka
, G. I.
Mackay
, and D.
Bohme
, Can. J. Chem.
56
, 193
(1978
), and their standard, However, Tanaka, Mackay, and Bohme actually give 4.5 kcal/mol for ΔP.A. Furthermore, Tanaka, Mackay, and Bohme prefer as a standard, based on the appearance potential of from already discussed (Ref. 14). Additional confusion is introduced for since Tanaka, Mackay, and Bohme appear to use the thermal electron convention, while Lias et al. (Ref. 16) use the stationary electron convention. If one takes and from Ref. 16, one obtains or 169.4 kcal/ mol. Tanaka, Mackay, and Bohme appear to have combined a stationary electron convention value for with a thermal electron convention value for to obtain 18.
D. F.
McMillen
and D. M.
Golden
, Annu. Rev. Phys. Chem.
33
, 493
(1982
).19.
20.
21.
22.
V. P. Glushko, L. V. Gurvich, G. A. Bergman, I. V. Veitz, V. A. Medredev, G. A. Khachkuruzov, and V. C. Yungman, Termodinamicheskie Cvoistva Individual’nikh Veshchestv (Nauka, Moscow, 1978 and 1979), Vols. 1 and 2.
23.
24.
O.
Benoist D’Azy
, F.
Lahmani
, C.
Lardeux
, and D.
Solgadi
, Chem. Phys.
94
, 247
(1985
).25.
L.
Batt
, K.
Christie
, R. T.
Milne
, and A. J.
Summers
, Int. J. Chem. Kinet.
6
, 877
(1974
).26.
27.
R.
Silverwood
and J. H.
Thomas
, Trans. Faraday Soc.
63
, 2476
(1967
).28.
29.
S.
Saebo/
, L.
Radom
, and H. F.
Schaefer
III, J. Chem. Phys.
78
, 845
(1983
).30.
31.
L. A.
Curtiss
, D.
Kock
, and J. A.
Pople
, J. Chem. Phys.
95
, 4040
(1991
).32.
L.
Batt
, J. P.
Burrows
, and G. N.
Robinson
, Chem. Phys. Lett.
78
, 467
(1981
).33.
34.
E. E.
Ferguson
, J.
Roncin
, and L.
Bonazzola
, Int. J. Mass Spectrom. Ion Proc.
79
, 215
(1987
).35.
J. M.
Dyke
, A. R.
Ellis
, N.
Jonathan
, N.
Keddar
, and A.
Morris
, Chem. Phys. Lett.
111
, 207
(1984
).36.
37.
J. A.
McCaulley
, N.
Kelly
, M. F.
Golde
, and F.
Kaufman
, J. Phys. Chem.
93
, 1014
(1989
).38.
M. Kol, S. Rozen, and E. Appelman, J. Am. Chem. Soc. (submitted).
39.
E. H. Appelman (privatecommunication).
40.
S. T.
Gibson
, J. P.
Greene
, and J.
Berkowitz
, J. Chem. Phys.
83
, 4319
(1985
);J.
Berkowitz
, J. P.
Greene
, H.
Cho
, and B.
Ruscic
, J. Chem. Phys.
86
, 1235
(1987
)., J. Chem. Phys.
41.
M.-H.
Whangbo
, S.
Wolfe
, and F.
Bernardi
, Can. J. Chem.
53
, 3040
(1975
).42.
T.
Momosa
, Yu.
Endo
, E.
Hirota
, and T.
Shida
, J. Chem. Phys.
88
, 5338
(1988
).43.
44.
G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand, Princeton, NJ, 1950), p. 457.
45.
46.
W. J.
Bouma
, R. H.
Nobes
, and L.
Radom
, Org. Mass Spectrom.
17
, 315
(1982
).47.
K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, and S. Iwata, Handbook of He I Photoelectron Spectra of Fundamental Organic Molecules (Japan Scientific Societies, Tokyo and Halsted, New York, 1981), p. 141.
48.
49.
J. D.
Dill
, C. L.
Fischer
, and F. W.
McLafferty
, J. Am. Chem. Soc.
101
, 6531
(1979
).50.
B. Ruscic, E. Appelman, and J. Berkowitz, J. Chem. Phys. (submitted).
This content is only available via PDF.
© 1991 American Institute of Physics.
1991
American Institute of Physics
You do not currently have access to this content.