We represent ring polymers with the off‐lattice rod‐bead model. We produce perfect unbiased model instances that have between 32 and 2048 beads. These rings are produced at several different values of bead radius, to represent polymers in solvents of different quality. These instances are subject to a novel smoothing operation that facilitates the determination of their topological state, which is represented with the Alexander polynomial. We observe that the probability of observing a trivial knot (P) has a decreasing exponential dependence on the contour length (N) of the polymer, or that P=exp(−N/N0). The characteristic length (N0) varies by many orders of magnitude depending on chain flexibility and solvent quality. For Gaussian rings in a theta solvent, the characteristic length (N0) is 2.6×102. For a good solvent, N0∼8×105. We also explore the expectation value of the minimum number of crossings and suggest that it probably cannot be represented as a power law or exponential function of N. We also suggest that sufficiently large rings will always be composite, and not prime.

1.
F. B.
Dean
,
A.
Stasiak
,
T.
Roller
, and
N.
Cozzarelli
,
J. Bio. Chem.
260
,
4975
(
1984
).
2.
F. Wiegel, Introduction to Path-Integral Methods in Physics and Polymer Science (World Scientific, Philadelphia, 1986).
3.
S. F.
Edwards
,
Proc. Phys. Soc.
91
,
513
(
1967
);
S. F.
Edwards
,
J. Phys. A
2
,
15
(
1968
);
S. F.
Edwards
,
Proc. R. Soc. London Ser. A
385
,
267
(
1982
).
4.
R.
Alexander-Katz
and
S. F.
Edwards
,
J. Phys. A
5
,
674
(
1972
).
5.
S.
Prager
and
H. L.
Frisch
,
J. Chem. Phys.
46
,
1475
(
1967
).
6.
N.
Saito
and
Y. D.
Chen
,
J. Chem. Phys.
59
,
3701
(
1973
).
7.
F. W.
Wiegel
,
J. Chem. Phys.
67
,
469
(
1977
);
F. W.
Wiegel
,
Physica
109A
,
609
(
1981
).
8.
P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University, Ithaca, 1979).
9.
M. G.
Brereton
and
S.
Shah
,
J. Phys. A
13
,
2751
(
1980
);
M. G.
Brereton
and
S.
Shah
,
14
,
L51
(
1981
); ,
J. Phys. A
M. G.
Brereton
and
S.
Shah
,
15
,
985
(
1982
).,
J. Phys. A
10.
R.
Ball
and
M. L.
Mehta
,
J. Phys. (Paris)
42
,
1193
(
1981
).
11.
K.
Iwata
and
T.
Kimura
,
J. Chem. Phys.
74
,
2039
(
1981
).
12.
P. G.
de Gennes
,
Macromolecules
17
,
703
(
1984
).
13.
M. Doi and S. F. Edwards, The Theory of Polymeric Dynamics (Clarendon, Oxford, 1986).
14.
M.
Delbrück
, in Mathematical Problems in the Biological Sciences,
Proc. Symp. Appl. Math.
14
,
55
(
1962
).
15.
H. L.
Frisch
and
D.
Klempner
,
Adv. Macromol. Chem.
2
,
149
(
1970
).
16.
D. W.
Sumners
and
S. G.
Whittington
,
J. Phys. A
21
,
1689
(
1988
).
17.
A. V.
Vologodskii
,
A. V.
Lukashin
,
M. D.
Frank-Karmenetskii
, and
V. V.
Anshelevich
,
Sov. Phys. JETP
39
,
1059
(
1974
).
18.
M. D.
Frank-Kamensetskii
,
A. V.
Lukashin
, and
A. V.
Vologodskii
,
Nature
258
,
398
(
1975
).
19.
J.
des Cloizeau
and
M. L.
Mehta
,
J. Phys.
40
,
665
(
1979
).
20.
M.
le Bret
,
Biopolymers
19
,
619
(
1980
).
21.
Y. D.
Chen
,
J. Chem. Phys.
74
,
2034
(
1981
);
Y. D.
Chen
,
75
,
2447
(
1981
); ,
J. Chem. Phys.
Y. D.
Chen
,
75
,
5160
(
1981
).,
J. Chem. Phys.
22.
M. D.
Frank-Kamenetskii
and
A. V.
Vologodskii
,
Sov. Phys. Usp.
24
,
679
(
1981
).
23.
J. P. J.
Michels
and
F. W.
Wiegel
,
Phys. Lett.
90A
,
381
(
1982
);
J. P. J.
Michels
and
F. W.
Wiegel
,
Proc. R. Soc. London Ser. A
403
,
269
(
1986
);
J. P. J.
Michels
and
F. W.
Wiegel
,
J. Phys. A
22
,
2393
(
1989
).
24.
A. Baumgartner, in Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer, Berlin, 1984).
25.
D. Rolfsen, Knots and Links (Publish or Perish, Berkeley, 1976).
26.
V. F. R.
Jones
,
Bull. Am. Math. Soc.
12
,
103
(
1985
).
27.
R. H. Crowell and R. H. Fox, Introduction to Knot Theory (Springer, Heidelberg, 1977).
28.
D. E. Knuth, The Art of Computer Programming (Addison-Wesley, Menlo Park, 1985).
29.
K. Koniaris and M. Muthukumar (unpublished).
This content is only available via PDF.
You do not currently have access to this content.