Laser induced fluorescence (LIF) measurements of CN production following electron impact on CH3CN are carried out over an energy range from 30 to 300 eV. Cross sections for production of CN (X, v=0) over this range are obtained using the cross section for production of N+2 (X, v=0) as standard. The CN fragments are determined to be rotationally ‘‘cold’’ suggesting that dissociation occurs by stretching of the C–C bond. Rotational ‘‘temperatures’’ increased by a factor of 2 (to 80 K) as the incident electron energy was increased from 30 to 300 eV. LIF measurements of the translational energies of the CN fragments revealed a group with a surprisingly low translational temperature of 130 K.

1.
H.
Helm
and
P.
Cosby
,
J. Chem. Phys.
86
,
6813
(
1987
).
2.
S. J. P.
Corrigan
,
J. Chem. Phys.
43
,
4381
(
1969
).
3.
H. F.
Winters
,
Chem. Phys.
36
,
353
(
1979
);
H. F.
Winters
,
J. Chem. Phys.
63
,
3462
(
1975
);
H. F.
Winters
,
44
,
1472
(
1966
).,
J. Chem. Phys.
4.
J. P. M.
Schmitt
,
P.
Gressier
,
M.
Krishnan
,
G.
deRosny
, and
J.
Perrin
,
Chem. Phys.
84
,
281
(
1984
).
5.
H.
Kawazumi
and
T.
Ogawa
,
Chem. Phys. Lett.
140
,
458
(
1987
).
6.
A. P.
Baronavski
,
Chem. Phys.
66
,
217
(
1982
).
7.
W.
Kreiger
,
J.
Hager
, and
J.
Pfab
,
Chem. Phys. Lett.
85
,
69
(
1982
).
8.
W. H.
Fisher
,
T.
Carrington
,
S. V.
Filseth
, and
C. M.
Sadowski
,
Chem. Phys.
82
,
443
(
1983
).
9.
K. A.
Mohammed
,
G. C.
King
, and
F. H.
Read
,
J. Electron. Spectrosc. Relat. Phenom.
12
,
229
(
1977
).
10.
T.
Nagata
,
T.
Kondow
, and
K.
Kuchitsu
,
Chem. Phys.
72
,
281
(
1982
).
11.
W. M.
Jackson
,
J. Chem. Phys.
61
,
4177
(
1974
).
12.
P. W.
Zetner
,
M.
Darrach
,
P.
Hammond
,
W. B.
Westerveld
,
R. L.
McConkey
, and
J. W.
McConkey
,
Chem. Phys.
124
,
453
(
1988
).
13.
G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 1, Spectra of Diatomic Molecules (Van Nostrand, Princeton, 1950).
14.
J. E.
Solomon
and
D. M.
Silva
,
J. Appl. Phys.
47
,
1519
(
1976
).
15.
L. L.
Danylewych
and
R. W.
Nicholls
,
Proc. R. Soc. London, Ser. A
360
,
355
(
1981
).
16.
R. G.
Bennett
and
F. W.
Dalby
,
J. Chem. Phys.
31
,
434
(
1959
).
17.
C. A.
van de Runstraat
,
F. J.
deHeer
, and
T. R.
Govers
,
Chem. Phys.
3
,
431
(
1974
).
18.
Y.
Itikawa
,
M.
Hayashi
,
A.
Ichimura
,
K.
Onda
,
K.
Sakimoto
,
K.
Takayanagi
,
M.
Nakamura
,
H.
Nishimura
, and
T.
Takayanagi
,
J. Phys. Chem. Ref. Data
15
,
985
(
1986
).
19.
E.
Krishnakumar
and
S. K.
Srivastava
,
J. Phys. B
23
,
1893
(
1990
).
20.
L. G.
Piper
,
B. D.
Green
,
W. A. M.
Blumberg
, and
S. J.
Wolnik
,
J. Phys. B
19
,
3327
(
1986
).
21.
W. L.
Borst
and
E. C.
Zipf
,
Phys. Rev. A
1
,
834
(
1970
).
22.
P. N.
Stanton
and
R. M. St.
John
,
Phys. Rev. A
1
,
252
(
1969
).
23.
J. W.
Gallagher
,
C. E.
Brion
,
J. A. R.
Samson
, and
P. W.
Langhoff
,
J. Phys. Chem. Ref. Data
17
,
9
(
1988
).
24.
J. B.
Anderson
and
J. B.
Fenn
,
Phys. Fluids
8
,
780
(
1965
).
25.
H.
Askenas
and
F. S.
Sherman
, 4th
R. G. D.
2
,
84
(
1964
).
26.
J. B.
Anderson
,
AIAAJ
10
,
112
(
1972
).
27.
H.
Haberland
,
U.
Buck
, and
M.
Tolle
,
Rev. Sci. Instum.
50
,
112
(
1955
).
This content is only available via PDF.
You do not currently have access to this content.