We have measured the negative ion photoelectron spectra of CH2N and CD2N and find the electron affinities: EA(CH2N)=0.511±0.008 eV and EA(CD2N)=0.498±0.011 eV. Franck–Condon simulations of these spectra are carried out and we estimate the CH2N and CH2N geometry differences; we fit our spectra with the following [constrained] molecular structures. We combine our EA(CH2N) with the results of previous gas phase ion studies to extract a number of thermochemical parameters (kcal/mol): Do0(CH2N–H)=85±5, Do0(H–HCN)=23±6, Do0(H2C–N)=144±6, and the isomerization enthalpy of H2CN+→HCNH+ is ΔHisom(C2vCv)=−51±7. Attempts to calculate the geometry and vibrational frequencies of the H2CN radical are disappointing. Unrestricted Hartree–Fock and second‐order Mo/ller–Plesset abinitio calculations in a 6‐31++G** basis produce badly spin‐contaminated wave functions which do not reproduce the experimental findings.

1.
C. R.
Moylan
and
J. I.
Brauman
,
Annu. Rev. Phys. Chem.
34
,
187
(
1983
).
2.
Ionization potentials and electron affinities are adiabatic enthalpy changes strictly denned at 0 K, while ΔHacid0 and D2980 commonly represent changes of enthalpy at 298 K. Equation (2) is more properly written as D2980(R−H) = ΔHacid0(R−H)+EA(R)−IP(H)−〈ΔCp0298. The difference in the integrated heat capacities can be written in the following manner: 〈ΔCp0298≡〈Cp0(T)[R]−Cp0(T)[R]〉0298+〈Cp0(T)[H+]−Cp0(T)[H]〉0298. In the absence of low-lying electronic states, the heat capacity correction is generally less than 0.5 kcal/mol since the structures and vibrational frequencies of the ions and neutrals are similar. Because the uncertainties of the ΔHacid0 measurements are commonly ±2 kcal/mol or greater, this correction is usually ignored; thus 〈ΔCp0298≅0 kcal/mol. (See Ref. 3, Sec. 3.3.) We adopt the convention that Cp(e)≡0. In Table V we have explicitly applied the heat capacity correction to obtain proper D00(R−H) and D2980(R−H) values.
3.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
, Gas-Phase Ion and Neutral Thermochemistry,
J. Phys. Chem. Reference Data
17
, Supplement No.
1
(
1988
).
4.
K. M.
Ervin
,
S.
Gronert
,
S. E.
Barlow
,
M. K.
Gilles
,
A. G.
Harrison
,
V. M.
Bierbaum
,
C. H.
DePuy
,
W. C.
Lineberger
, and
G. B.
Ellison
,
J. Am. Chem. Soc.
112
,
5750
(
1990
).
5.
The proton affinity of the ion is identical to the gas phase acidity of the corresponding neutral; thus PA(CH2N)≡ΔHacid0(CH2N‐H).
6.
G.
Marston
,
F. L.
Nesbitt
,
D. F.
Nava
,
W. A.
Payne
, and
L. J.
Stief
,
J. Phys. Chem.
93
,
5769
(
1989
).
7.
G.
Marston
,
F. L.
Nesbitt
, and
L. J.
Stief
,
J. Chem. Phys.
91
,
3483
(
1989
).
8.
C. U.
Morgan
and
R. A.
Beyer
,
Combust. Flame
36
,
99
(
1979
);
X.
Zhao
,
E.
Hintsa
, and
Y. T.
Lee
,
J. Phys. Chem.
88
,
801
(
1988
).
9.
E. L.
Cochran
,
F. J.
Adrian
, and
V. A.
Bowers
,
J. Chem. Phys.
36
,
1938
(
1962
).
10.
M. C. R.
Symons
,
Tetrahedron
29
,
615
(
1973
).
11.
D.
Banks
and
W.
Gordy
,
Mol. Phys.
26
,
1555
(
1973
).
12.
L. B.
Harding
and
W. A.
Goddard
III
,
J. Am. Chem. Soc.
97
,
6293
(
1975
).
13.
D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, Molecular Photoelectron Spectroscopy (Wiley, New York, 1970), Chap. 5.
14.
S. R.
Kass
and
C. H.
DePuy
,
J. Org. Chem.
50
,
2874
(
1985
).
15.
Unpublished studies by Dr. H. Benton Ellis, Jr. (University of Colorado, 1983).
16.
D. J.
DeFrees
and
W. J.
Hehre
,
J. Phys. Chem
,
82
,
391
(
1978
).
17.
F. L. Nesbitt, G. Marston, L. J. Stief, M. A. Wickramaaratchi, W. Tao, and R. B. Klemm, J. Phys. Chem. (submitted).
18.
L. L.
Lohr
,
J. Phys. Chem.
89
,
3465
(
1985
).
19.
R. A.
Bair
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
82
,
2280
(
1985
).
20.
M. E.
Jacox
,
J. Phys. Chem.
91
,
6595
(
1987
).
21.
G.
Marston
and
L. J.
Stief
,
Res. Chem. Intermed.
12
,
161
(
1989
).
22.
H. B.
Ellis
, Jr.
, and
G. B.
Ellison
,
J. Chem. Phys.
78
,
6541
(
1983
).
23.
H. B. Ellis, Jr., Ph. D. thesis, University of Colorado, 1983.
24.
R. L.
Livingston
and
C. N.
Ramachandra Rao
,
J. Phys. Chem.
64
,
756
(
1960
).
25.
D. M.
Neumark
,
K. R.
Lykke
,
T.
Andersen
, and
W. C.
Lineberger
,
Phys. Rev. A
32
,
1890
(
1985
).
26.
C. T.
Wickham-Jones
,
K. M.
Ervin
,
G. B.
Ellison
, and
W. C.
Lineberger
,
J. Chem. Phys.
91
,
2762
(
1989
).
27.
The value of γ is established by study of the photoelectron spectra of the tungsten atom. Detachment of the W ion produces several states of W I; one can detect W[a5D(J = 0)]←W,W[a5D(J = 1)]←W,W[a5D(J = 2)]←W,W[a5D(J = 3)]←W,W[a56D(J = 4)]←W, as well as W[a7S(J = 3)]←W, These intervals have been established by atomic spectroscopy and are tabulated by Charlotte E. Moore, Atomic Energy Levels, Vol. II, NSRDS-NBS 35 (US GPO, Washington, DC, 1971). Use of these precisely known intervals fixes γ.
28.
P. C.
Engelking
,
J. Phys. Chem.
90
,
4544
(
1986
).
29.
S. V.
ONeil
and
W. P.
Reinhardt
,
J. Chem. Phys.
69
,
2126
(
1978
).
30.
E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw Hill, New York, 1955). Appendix VI, pp. 303–306. We use the following expressions in which Θ is the H-C-H angle and the C-H bond length is r; the reciprocal masses for C and H are written as μH≡(mass hydrogen)−1 and μc≡(mass carbon)−1;g110 = μHc(1+cos Θ),g220 = μcN,g330 = 2μH/r2+2μc/r2(1−cos Θ).
31.
From our modeling of the CH2N and CD2N spectra, we believe that δRCN cannot exceed ±0.02 Å. Consequently RCN(CH2N) = 1.268 Å implies that RCN(CH2N) = 1.27±0.02 Å.
32.
GAUSSIAN 86, M. J. Frisch, J. S. Binkley, H. B. Schlegel, K. Raghavachari, C. F. Melius, R. L. Martin, J. J. P. Steward, F. W. Bobrowicz, C. M. Rohlfing, L. R. Kahn, D. J. DeFrees, R. Seeger, R. A. Whiteside, D. J. Fox, E. M. Fleuder, and J. A. Pople, Carnegie-Mellon University, Pittsburgh, PA, 1986.
33.
G. F.
Adams
,
D. R.
Yarkony
,
R. J.
Bartlett
, and
G. D.
Purvis
,
Int. J. Quantum Chem.
23
,
437
(
1983
).
34.
J. A.
Pople
,
H. B.
Schlegel
,
R.
Krishnan
,
D. J.
DeFrees
,
J. S.
Binkley
,
M. J.
Frisch
,
R. A.
Whiteside
,
R. F.
Hout
,Jr.
, and
W. J.
Hehre
,
Int. J. Quantum Chem. Symp.
15
,
269
(
1981
);
D. J.
DeFrees
and
A. D.
McLean
,
J. Chem. Phys.
82
,
333
(
1985
);
B. A.
Hess
, Jr.
,
L. J.
Schaad
,
P.
Carsky
, and
R.
Zahradnik
,
Chem. Rev.
86
,
709
(
1986
).
35.
P. M. W.
Gill
,
J. A.
Pople
,
L.
Radom
, and
R. H.
Nobes
,
J. Chem. Phys.
89
,
7307
(
1988
).
36.
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (MacMillan, New York, 1982), Sec. 2.5.3.
37.
J. J. W.
McDouall
and
H. B.
Schlegel
,
J. Chem. Phys.
90
,
2363
(
1989
).
38.
J.
Berkowitz
,
C. A.
Mayhew
, and
B.
Ruscic
,
J. Chem. Phys.
88
,
7396
(
1988
).
39.
L. A.
Curtiss
and
J. A.
Pople
,
J. Chem. Phys.
88
,
7405
(
1988
).
40.
W. A.
Goddard
III
and
L. B.
Harding
,
Annu. Rev. Phys. Chem.
29
,
363
(
1978
).
41.
It is also pertinent to recall that D00(CH2=CH2) = 171.0±1.2 kcal/mol; see Ref. 4.
42.
S. T.
Gibson
,
J. P.
Greene
, and
J.
Berkowitz
,
J. Chem. Phys.
83
,
4319
(
1985
).
43.
S. S.
Prasad
and
W. J.
Huntress
,
Astrophys. J. Suppl.
43
,
1
(
1980
);
J. E.
Graedel
,
W. D.
Langer
, and
M. A.
Frerking
,
Astrophys. J. Suppl.
48
,
321
(
1982
);
C. M.
Leung
,
E.
Herbst
, and
W. F.
Huebner
,
Astrophys. J. Suppl.
56
,
231
(
1984
).
44.
R. S.
Altman
,
M. W.
Crofton
, and
T.
Oka
,
J. Chem. Phys.
80
,
3911
(
1984
).
45.
L. M.
Ziurys
and
B. E.
Turner
,
Astrophys. J. Lett.
302
,
L31
(
1986
).
46.
M. P.
Conrad
and
H. F.
Schaefer
III
,
Nature
274
,
456
(
1978
);
T. L.
Allen
,
J. D.
Goddard
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
73
,
3255
(
1980
).
47.
D. J.
DeFrees
and
A. D.
McLean
,
J. Am. Chem. Soc.
107
,
4350
(
1985
);
D. J.
DeFrees
,
J. S.
Binkley
,
M. J.
Frisch
, and
A. D.
McLean
,
J. Chem. Phys.
85
,
5194
(
1986
).
48.
Unreferenced values from
M. W.
Chase
, Jr.
,
C. A.
Davies
,
J. R.
Downey
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syverud
,
J. Phys. Chem. Ref. Data
14
, Suppl. No.
1
(
1985
).
49.
S. G.
Lias
,
J. F.
Liebman
, and
R. D.
Levin
,
J. Phys. Chem. Ref. Data
13
,
695
(
1984
).
50.
D. G.
Leopold
,
K. K.
Murray
,
A. E.
Stevens Miller
, and
W. C.
Lineberger
,
J. Chem. Phys.
83
,
4849
(
1985
).
51.
S. T.
Gibson
,
J. P.
Greene
, and
J.
Berkowitz
,
J. Chem. Phys.
83
,
4319
(
1985
);
W. R.
Anderson
,
J. Phys. Chem.
93
,
530
(
1989
).
52.
J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of Organic Compounds, 2nd ed. (Chapman and Hall, New York, 1986).
This content is only available via PDF.
You do not currently have access to this content.