Endothermic hydride abstraction reactions of Fe+ with propane, cyclopropane, n‐butane, cyclopentane, and acetaldehyde are studied in the gas phase as a function of ion translational energy in a guided ion beam mass spectrometer. The thresholds for these reactions are measured and used to derive 298 K values of D°(Fe–H)=1.63±0.08 eV (37.5±1.9 kcal/mol), D°(Fe+ –H)=8.77±0.08 eV (202.3±1.9 kcal/mol), IE(FeH)=7.37±0.10 eV, PA(Fe)=347.6±1.9 kcal/mol, and Δf H(FeH)=113.9±1.9 kcal/mol. This thermochemistry is compared with prior measurements and theoretical values.

1.
For a recent review, see P. B. Armentrout and L. S. Sunderlin, in Transition Metal Hydrides, edited by A. Dedieu (VCH, New York) (to be published).
2.
J. L.
Elkind
and
P. B.
Armentrout
,
J. Phys. Chem.
91
,
2037
(
1987
).
3.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
4.
C. W. Bauschlicher, in Transition Metal Hydrides, edited by A. Dedieu (to be published).
5.
(a)
P. K.
Carroll
and
P.
McCormack
,
Astrophys. J.
177
,
L33
(
1972
);
(b)
P. K.
Carroll
,
P.
McCormack
, and
S.
O’Connor
,
Astrophys. J.
208
,
903
(
1976
); ,
Astrophys. J.
(c)
W. J.
Balfour
,
B.
Lindgren
, and
S.
O’Connor
,
Chem. Phys. Lett.
96
,
251
(
1983
);
W. J.
Balfour
,
B.
Lindgren
, and
S.
O’Connor
,
Phys. Scr.
28
,
551
(
1983
);
(d)
J. G.
Phillips
,
S. P.
Davis
,
B.
Lindgren
, and
W. J.
Balfour
,
Astrophys. J. Supp. Ser.
65
,
721
(
1987
);
(e)
S. P.
Beaton
,
K. M.
Evenson
,
T.
Nelis
, and
J.
Brown
,
J. Chem. Phys.
89
,
4446
(
1988
).
6.
A.
Dendramis
,
R. J.
van Zee
, and
W.
Weltner
,
Astrophys. J.
231
,
632
(
1979
).
7.
A.
Kant
and
K. A.
Moon
,
High Temp. Sci.
14
,
23
(
1981
).
8.
A. E.
Stevens
,
C. S.
Feigerle
, and
W. C.
Lineberger
,
J. Chem. Phys.
78
,
5420
(
1983
).
9.
L.
Sallans
,
K.
Lane
,
R. R.
Squires
, and
B. S.
Freiser
,
J. Am. Chem. Soc.
107
,
4379
(
1985
).
10.
M.
Tolbert
and
J. L.
Beauchamp
,
J. Phys. Chem.
90
,
5015
(
1986
).
11.
R. H.
Schultz
,
J. L.
Elkind
, and
P. B.
Armentrout
,
J. Am. Chem. Soc.
110
,
411
(
1988
).
12.
G.
Das
,
J. Chem. Phys.
74
,
5766
(
1981
).
13.
S. P.
Walch
and
C. W.
Bauschlicher
, Jr.
,
J. Chem. Phys.
78
,
4597
(
1983
).
14.
M.
Krauss
and
W. J.
Stevens
,
J. Chem. Phys.
82
,
5584
(
1985
).
15.
M.
Dolg
,
U.
Wedig
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
86
,
2123
(
1987
).
16.
D. P.
Chong
,
S. R.
Langhoff
,
C. W.
Bauschlicher
,Jr.
,
S.
Walch
, and
H.
Partridge
,
J. Chem. Phys.
85
,
2850
(
1986
);
C. W.
Bauschlicher
,
S. R.
Langhoff
,
H.
Partridge
, and
L. A.
Barnes
,
J. Chem. Phys.
91
,
2399
(
1989
).,
J. Chem. Phys.
17.
M.
Sodupe
,
J. M.
Lluch
,
A.
Oliva
,
F.
Illas
, and
J.
Rubio
,
J. Chem. Phys.
92
,
2478
(
1990
).
18.
J.
Sugar
and
C.
Corliss
,
J. Phys. Chem. Ref. Data
14
(
1985
), Suppl. 2.
19.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data
17
(
1988
), Suppl. 1 (GIANT tables).
20.
J. L.
Elkind
and
P. B.
Armentrout
,
J. Am. Chem. Soc.
108
,
2765
(
1986
);
J. L.
Elkind
and
P. B.
Armentrout
,
J. Phys. Chem.
90
,
5736
(
1986
).
21.
L. S.
Sunderlin
and
P. B.
Armentrout
,
J. Phys. Chem.
94
,
3589
(
1990
).
22.
(a)
R.
Georgiadis
,
E. R.
Fisher
, and
P. B.
Armentrout
,
J. Am. Chem. Soc.
111
,
4251
(
1989
);
(b)
E. R.
Fisher
and
P. B.
Armentrout
,
J. Phys. Chem.
94
,
1674
(
1990
).
23.
K. M.
Ervin
and
P. B.
Armentrout
,
J. Chem. Phys.
83
,
166
(
1985
).
24.
L. S.
Sunderlin
and
P. B.
Armentrout
,
Chem. Phys. Lett.
167
,
188
(
1990
).
25.
L. S.
Sunderlin
and
P. B.
Armentrout
,
J. Phys. Chem.
92
,
1209
(
1988
).
26.
S. K.
Loh
,
E. R.
Fisher
,
L.
Lian
,
R. H.
Schultz
, and
P. B.
Armentrout
,
J. Phys. Chem.
93
,
3159
(
1989
).
27.
N.
Aristov
and
P. B.
Armentrout
,
J. Am. Chem. Soc.
108
,
1806
(
1986
);
N.
Aristov
and
P. B.
Armentrout
,
J. Phys. Chem.
91
,
6178
(
1987
).
28.
G. D.
Byrd
,
R. C.
Burnier
, and
B. S.
Freiser
,
J. Am. Chem. Soc.
104
,
3565
(
1982
).
29.
D. B.
Jacobson
and
B. S.
Freiser
,
J. Am. Chem. Soc.
105
,
7492
(
1983
).
30.
(a)
J.
Allison
,
R. B.
Freas
, and
D. P.
Ridge
,
J. Am. Chem. Soc.
101
,
1332
(
1979
);
(b)
R. B.
Freas
and
D. P.
Ridge
,
J. Am. Chem. Soc.
102
,
7129
(
1980
); ,
J. Am. Chem. Soc.
(c)
L. F.
Halle
,
P. B.
Armentrout
, and
J. L.
Beauchamp
,
Organometallics
1
,
963
(
1982
);
(d)
R.
Houriet
,
L. F.
Halle
, and
J. L.
Beauchamp
,
Organometallics
2
,
1818
(
1983
).,
Organometallics
31.
P. B.
Armentrout
and
J. L.
Beauchamp
,
Acc. Chem. Res.
22
,
315
(
1989
).
32.
R. C.
Burnier
,
G. D.
Byrd
, and
B. S.
Freiser
,
J. Am. Chem. Soc.
103
,
4360
(
1981
).
33.
Comparison of the sum of the m/z = 55 and 57 mass peaks from Fe+54 with the m/z = 57 peak from Fe+56 shows that the m/z = 55 for Fe+54 consists of FeH+54 with no significant mixture of C4H7+ which also has m/z = 55.
34.
S. D.
Hanton
,
R. J.
Noll
, and
J. C.
Weisshaar
,
J. Phys. Chem.
94
,
5655
(
1990
).
35.
M. W.
Chase
, Jr.
,
C. A.
Davies
,
J. R.
Downey
, Jr.
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syverud
,
J. Phys. Chem. Ref. Data
14
(
1985
), Suppl. 1 (JANAF tables).
36.
D. G.
Leopold
and
W. C.
Lineberger
,
J. Chem. Phys.
85
,
51
(
1986
).
37.
J. E. Bartmess and R. T. McIver, Jr., in Gas Phase Ion Chemistry, edited by M. T. Bowers (Academic, New York, 1979), Chap. 11.
38.
(a)
S. G.
Lias
,
J. F.
Liebman
, and
R. D.
Levin
,
J. Phys. Chem. Ref. Data
13
,
695
(
1984
);
(b)
D. F.
McMillen
and
D. M.
Golden
,
Annu. Rev. Phys. Chem.
33
,
493
(
1982
).
39.
J.
Dyke
,
A.
Ellis
,
N.
Jonathan
, and
A.
Morris
,
J. Chem. Soc. Faraday 2
81
,
1573
(
1985
).
40.
(a)
P. B.
Armentrout
,
L. F.
Halle
, and
J. L.
Beauchamp
,
J. Am. Chem. Soc.
103
,
6501
(
1981
);
(b)
M. L.
Mandich
,
L. F.
Halle
, and
J. L.
Beauchamp
,
J. Am. Chem. Soc.
106
,
4403
(
1984
); ,
J. Am. Chem. Soc.
(c)
E. A.
Carter
and
W. A.
Goddard
,
J. Phys. Chem.
92
,
5679
(
1988
).
41.
J. L.
Elkind
and
P. B.
Armentrout
,
Inorg. Chem.
25
,
1078
(
1986
).
42.
P. B.
Armentrout
and
R.
Georgiadis
,
Polyhedron
7
,
1573
(
1988
).
43.
P. B.
Armentrout
,
L. S.
Sunderlin
, and
E. R.
Fisher
,
Inorg. Chem.
28
,
4436
(
1989
).
44.
P. B.
Armentrout
,
ACS Symp. Ser.
428
,
18
(
1990
).
45.
R. R.
Squires
,
J. Am. Chem. Soc.
107
,
4385
(
1985
).
46.
This value is based on more recent values of D°(MH). The value originally proposed by Squires was 341±5 kcal/mol.
This content is only available via PDF.
You do not currently have access to this content.