The MP2‐R12 method (Mo/ller–Plesset second‐order perturbation theory with terms linear in the interelectronic coordinate r12) in the approximations A and B as outlined in paper I of this series is applied to the ground states of the molecules H2, LiH, HF, H2O, NH3, CH4, Be2, N2, F2, C2H2, and CuH in their experimental equilibrium geometry, and to the van der Waals interaction between two He atoms. In all cases MP2 correlation energies are obtained that are supposed to differ by at most a few percent from the basis set limit. For CH4 the dependence of the energy on the symmetric stretching coordinate is studied, which together with other information leads to a recommended bond length of 1.086 Å for the CH bond length. For He2 and F2 the canonical and localized descriptions are compared. The latter is superior for the K‐shell contributions, otherwise there is a little difference. For He2 in the localized representation rather good results for the dispersion interaction are obtained. The potential curve of Be2 is significantly improved in MP2‐R12 as compared to conventional MP2. The examples C2H2 and CuH show that the method is not limited to very small systems.

1.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
2.
V.
Termath
,
W.
Klopper
, and
W.
Kutzelnigg
,
J. Chem. Phys.
94
,
2002
(
1991
).
3.
W.
Klopper
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
134
,
17
(
1987
).
4.
W. Klopper and W. Kutzelnigg, in Quantum Chemistry-Basic Aspects, Actual Trends, edited by R. Carbo, Studies in Physical and Theoretical Chemistry (Elsevier, Amsterdam, 1989), Vol. 62, p. 45
5.
W.
Klopper
and
W.
Kutzelnigg
,
J. Phys. Chem.
94
,
5625
(
1990
).
6.
S.
Saebo/
and
J.
Almlöf
,
Chem. Phys. Lett.
154
,
83
(
1989
) and J. Almlöf (private communication).
7.
H.
Preuss
,
Z. Naturforsch. Teil A
11
,
823
(
1956
).
8.
F.
Driessler
and
R.
Ahlrichs
,
Chem. Phys. Lett.
23
,
571
(
1973
).
9.
A.
Preiskorn
and
B.
Zurawski
,
Int. J. Quantum Chem.
27
,
641
(
1985
).
10.
U. Meier, Diplomarbeit, Ruhr-Universität Bochum, 1984.
11.
R.
Ahlrichs
,
Theoret. Chim. Acta
33
,
157
(
1974
).
12.
B.
Berg
and
A.
Billoire
,
Supercomputer
13
,
28
(
1986
).
13.
K.
Szalewicz
,
B.
Jeziorski
,
H.
Monkhorst
, and
J. G.
Zabolitzky
,
J. Chem. Phys.
78
,
1420
(
1984
);
S. A.
Alexander
,
H. J.
Monkhorst
, and
K.
Szalewicz
,
J. Chem. Phys.
87
,
3976
(
1987
); ,
J. Chem. Phys.
S. A.
Alexander
,
H. J.
Monkhorst
, and
K.
Szalewicz
,
89
,
355
(
1988
).,
J. Chem. Phys.
14.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 4, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
15.
C. E. Moore, Atomic Energy Levels, Natl. Stand. Ref. Data. Ser.-Natl. Bur. Stand. Circ. No. 35 (US GPO, Washington, DC, 1971), Vols. I and II-
16.
G. A.
Petersson
,
A. K.
Yee
, and
A.
Bennett
,
J. Chem. Phys.
83
,
5105
(
1985
).
17.
G. A.
Petersson
,
A.
Bennett
,
T. G.
Tensfeldt
,
M. A.
Al-Laham
,
W. A.
Shirley
, and
J.
Mantzaris
,
J. Chem. Phys.
89
,
2193
(
1988
).
18.
G. A.
Petersson
and
M.
Braunstein
,
J. Chem. Phys.
83
,
5129
(
1985
).
19.
L.
Adamowicz
and
R. J.
Bartlett
,
Phys. Rev. A
37
,
1
(
1988
).
20.
K. B.
Wenzel
and
J. G.
Zabolitzky
,
J. Chim. Phys.
84
,
691
(
1987
).
21.
K.
Kuchitsu
and
L. S.
Bartell
,
J. Chem. Phys.
36
,
2470
(
1962
).
22.
W.
Meyer
,
J. Chem. Phys.
58
,
1017
(
1973
).
23.
P. E. M.
Siegbahn
,
Chem. Phys. Lett.
119
,
515
(
1985
).
24.
N. C.
Handy
,
J. F.
Gaw
, and
E. D.
Simandiras
,
J. Chem. Soc. Farad. Trans. 2
83
,
1577
(
1987
).
25.
P.
Bowen-Jenkins
,
L. G. M.
Pettersson
,
P. E. M.
Siegbahn
,
J.
Almlöf
, and
P. R.
Taylor
,
J. Chem. Phys.
88
,
6977
(
1988
).
26.
P.
Pulay
and
S.
Saebo/
,
Theoret. Chim. Acta
69
,
357
(
1986
).
27.
P. R. Taylor and J. Almlöf (private communication).
28.
R. J.
Harrison
and
N. C.
Handy
,
Chem. Phys. Lett.
123
,
321
(
1986
).
29.
G. A.
Petersson
and
W. A.
Shirley
,
Chem. Phys. Lett.
160
,
494
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.