The MP2‐R12 method in approximations A and B as outlined in part I of this series is applied to the ground states of the closed‐shell atoms He, Be, Ne, Mg, Ar, Ca, Cu+, Zn2+, and Kr, in terms of both STO and GTO basis sets. For He, Be, and Ne the partial wave increments of the various pairs are documented and compared with their conventional counterparts. The fast convergence of the partial wave increments, that go as (l+ (1)/(2) )−8 in the MP2‐R12/B scheme, is demonstrated. From the MP2‐R12 calculations more accurate estimates of the exact MP2 energies are possible than from the conventional partial wave expansion. The actually calculated values differ generally by a fraction of a 1% from the estimated basis sets limits if STO basis sets with l≤5 (in some cases l≤6) are used, while errors of typically 1% are obtained with GTO basis sets and l≤3.

1.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
2.
R. N.
Hill
,
J. Chem. Phys.
83
,
1173
(
1985
).
3.
W.
Kutzelnigg
,
Theoret. Chim. Acta
68
,
445
(
1985
).
4.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
5.
W.
Klopper
and
W.
Kutzelnigg
,
J. Chem. Phys.
94
,
2020
(
1991
).
6.
W.
Klopper
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
134
,
17
(
1987
).
7.
W. Klopper and W. Kutzelnigg, in Quantum Chemistry-Basic Aspects, Actual Trends, edited by R. Carbo, Studies in Physical and Theoretical Chemistry (Elsevier, Amsterdam, 1989), Vol. 62, p. 45.
8.
W.
Klopper
and
W.
Kutzelnigg
,
J. Phys. Chem.
94
,
5625
(
1990
).
9.
C.C.J. Roothaan (private communication).
10.
W. Kutzelnigg and J. D. Morgan (to be published).
11.
W. Kutzelnigg, M. Schindler, W. Klopper, S. Koch, U. Meier, and H. Wallmeier, in Super Computer Simulations in Chemistry, edited by M. Dupuis, Lecture Notes in Chemistry (Springer, Berlin, 1986), Vol. 44, p. 55.
12.
P.
Malinowski
,
M.
Polasik
, and
K.
Jankowski
,
J. Phys. B
12
,
2965
(
1979
).
13.
B.
Jeziorski
,
H. J.
Monkhorst
,
K.
Szalewicz
, and
J. G.
Zabolitzky
,
J. Chem. Phys.
78
,
1420
(
1983
);
B.
Jeziorski
,
H. J.
Monkhorst
,
K.
Szalewicz
, and
J. G.
Zabolitzky
,
79
,
554
(
1983
); ,
J. Chem. Phys.
B.
Jeziorski
,
H. J.
Monkhorst
,
K.
Szalewicz
, and
J. G.
Zabolitzky
,
81
,
368
,
2723
(
1984
); ,
J. Chem. Phys.
S. A.
Alexander
,
H. J.
Monkhorst
, and
K.
Szalewicz
,
J. Chem. Phys.
85
,
5821
(
1986
), ,
J. Chem. Phys.
S. A.
Alexander
,
H. J.
Monkhorst
, and
K.
Szalewicz
,
87
,
3976
(
1987
), ,
J. Chem. Phys.
S. A.
Alexander
,
H. J.
Monkhorst
, and
K.
Szalewicz
,
89
,
355
(
1988
).,
J. Chem. Phys.
14.
K.
Jankowski
and
P.
Malinowski
,
Phys. Rev. A
21
,
45
(
1980
).
15.
I.
Lindgren
and
S.
Salomonsen
,
Phys. Scr.
21
,
335
(
1980
).
16.
G. A.
Petersson
,
A. K.
Yee
, and
A.
Bennett
,
J. Chem. Phys.
83
,
5105
(
1985
).
17.
K.
Wenzel
,
J. G.
Zabolitzky
,
K.
Szalewicz
,
B.
Jeziorski
, and
H. J.
Monkhorst
,
J. Chem. Phys.
85
,
3964
(
1986
).
18.
B. Jeziorski (private communication).
19.
H.
Sekino
and
Y.
Ishikawa
,
Int. J. Quant. Chem. Symp.
23
,
339
(
1989
).
20.
S.
Salomonson
and
P.
Oster
,
Phys. Rev. A
40
,
5559
(
1989
).
21.
K.
Jankowski
,
P.
Malinowski
, and
M.
Polasik
,
J. Phys. B
12
,
3157
(
1979
).
22.
K.
Jankowski
,
P.
Malinowski
, and
M.
Polasik
,
Acta Phys. Pol. A
74
,
207
(
1988
).
23.
B. H.
Wells
and
S.
Wilson
,
J. Phys. B
19
,
2411
(
1986
).
24.
V. Termath, Diplomarbeit, Ruhr-Universität Bochum, 1988.
25.
K.
Jankowski
,
P.
Malinowski
, and
M.
Polasik
,
J. Chem. Phys.
76
,
448
(
1982
).
26.
K.
Jankowski
,
P.
Malinowski
, and
M.
Polasik
,
J. Chem. Phys.
82
,
841
(
1985
).
27.
E.
Clementi
and
C.
Roetti
,
At. Data Nucl. Data Tables
14
,
177
(
1974
).
28.
M.
Sekiya
and
H.
Tatewaki
,
Theoret. Chim. Acta
71
,
149
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.