Guided‐ion‐beam mass spectrometry is used to examine the kinetic‐energy dependence of the reaction of ground‐state atomic carbon ion with molecular nitrogen. Integral reaction cross sections are measured for the three possible product channels: N2+ + C,CN+ + N, and N+ + CN, all strongly endothermic. Thresholds for all three channels are found to be consistent with literature thermochemistry, although formation of N2+ is inefficient near threshold. The observed behavior suggests that the Π3 state of CN+ is either the ground state or within 0.14 eV of the ground state, and that N2+ is formed primarily in its A 2Πu first excited state rather than the X 2Σg+ ground state. The thermochemistry measured here finds ΔfH00(CN)=102±3 kcal/mol, D00(CN)=7.82±0.14 eV, and IE(CN)=14.02±0.14 eV. The reaction mechanism for this system is explored by examination of the electronic state correlations and by phase‐space calculations.

1.
Reaction enthalpies correspond to formation of products in their ground electronic states at 0 K and are based on tabulated heats of formation from the JANAF Tables:
M. W.
Chase
, Jr.
,
C. A.
Davies
,
J. R.
Downey
, Jr.
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syverud
,
J. Phys. Chem. Ref. Data
14
, Suppl.
1
(
1975
). The listing for ΔfH0(CN,0K) on p. 613 of this reference is confusing since a value of 436.8±10 kJ/mol is listed at the top of the page but the text cites adoption of a median value of 103.2±2.5 kcal/mol(431.8±10 kJ/mol). This latter value is consistent with the discussion of CN+ on p. 614 and hence is used here.
2.
E. A.
Ballik
and
D. A.
Ramsay
,
Astrophys. J.
137
,
61
(
1963
);
E. A.
Ballik
and
D. A.
Ramsay
,
137
,
84
(
1963
).,
Astrophys. J.
3.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979). These authors list no information regarding the CN+(3п) state.
4.
A. A.
Wu
,
Chem. Phys.
2i
,
173
(
1977
);
A. A.
Wu
,
Chem. Phys. Lett.
59
,
457
(
1978
).
5.
D. M.
Hirst
,
Chem. Phys. Lett.
65
,
181
(
1979
).
6.
T.-K.
Ha
,
Chem. Phys. Lett.
66
,
317
(
1979
).
7.
J. N.
Murrell
,
A.
Al-Derzi
,
J.
Tennyson
, and
M. F.
Guest
,
Molec. Phys.
38
,
1755
(
1979
).
8.
P. J.
Bruna
,
S. D.
Peyerimhoff
, and
R. J.
Buenker
,
J. Chem. Phys.
72
,
5437
(
1980
);
P. J.
Bruna
,
S. D.
Peyerimhoff
, and
R. J.
Buenker
,
Chem. Phys. Lett.
72
,
278
(
1980
).
9.
B. O.
Roos
,
P.
Linse
,
P. E. M.
Siegbahn
, and
M. R. A.
Blomberg
,
Chem. Phys.
66
,
197
(
1982
).
10.
S.
Evangelisti
,
J.-P.
Daudey
, and
J.-P.
Malrieu
,
Chem. Phys.
75
,
91
(
1983
).
11.
K. M.
Ervin
and
P. B.
Armentrout
,
J. Chem. Phys.
84
,
6738
(
1986
).
12.
J. D.
Burley
and
P. B.
Armentrout
,
Int. J. Mass Spectrom. Ion Processes
84
,
157
(
1988
).
13.
W. S.
Koski
,
Rec. Chem. Prog.
31
,
155
(
1970
);
R. C. C.
Lao
,
R. W.
Rozett
, and
W. S.
Koski
,
J. Chem. Phys.
49
,
4202
(
1968
).
14.
J. J.
Leventhal
,
J. Chem. Phys.
55
,
4654
(
1971
).
15.
T. F.
Moran
and
B. P.
Mathur
,
Phys. Rev. A
21
,
1051
(
1980
).
16.
C.
Ottinger
and
J.
Simonis
,
Chem. Phys.
28
,
97
(
1978
).
17.
D. C.
Fullerton
and
T. F.
Moran
,
Int. J. Mass Spectrom. Ion Phys.
9
,
15
(
1972
).
18.
M.
Costes
,
C.
Naulin
, and
G.
Dorthe
,
Astron. Astrophys.
232
,
270
(
1990
).
19.
R.
Engleman
and
P. E.
Rouse
,
J. Quant. Spectros. Radiat. Transfer
15
,
831
(
1975
).
20.
M. B.
Colket
,
J. Quant. Spectrosc. Radiat. Transfer
31
,
7
(
1984
).
21.
J. O.
Arnold
and
R. W.
Nicholls
,
J. Quant. Spectrosc. Radiat. Transfer
12
,
1435
(
1972
).
22.
V. H.
Dibeler
and
S. K.
Liston
,
J. Chem. Phys.
47
,
4548
(
1967
);
V. H.
Dibeler
and
S. K.
Liston
,
48
,
4765
(
1968
).,
J. Chem. Phys.
23.
D. D.
Davis
and
H.
Okabe
,
J. Chem. Phys.
49
,
5526
(
19J68
).
24.
D. W.
Setser
and
D. H.
Steadman
,
J. Chem. Phys.
49
,
467
(
1968
).
25.
J.
Berkowitz
,
W. A.
Chupka
, and
T. A.
Walter
,
J. Chem. Phys.
50
,
1497
(
1969
).
26.
C. W.
Bauschlicher
,
S. R.
Langhoff
, and
P. R.
Taylor
,
Astrophys. J.
322
,
531
(
1988
).
27.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data
17
,
1
Suppl. 1 (
1988
).
28.
K. M.
Ervin
and
P. B.
Armentrout
,
J. Chem. Phys.
83
,
166
(
1985
).
29.
N. R.
Daly
,
Rev. Sci. Instrum.
31
,
264
(
1960
).
30.
L. S.
Sunderlin
and
P. B.
Armentrout
,
Chem. Phys. Lett.
167
,
188
(
1990
).
31.
P. A. M.
Van Koppen
,
P. R.
Kemper
,
A. J.
Illies
, and
M. T.
Bowers
,
Int. J. Mass Spectrom. Ion Processes
54
,
263
(
1983
).
32.
J. D.
Burley
,
K. M.
Ervin
, and
P. B.
Armentrout
,
J. Chem. Phys.
86
,
1944
(
1987
).
33.
E. W. McDaniel and E. A. Mason, The Mobility and Diffusion of Ions in Gases (Wiley, New York, 1973), Table 7-1-K-l.
34.
J. H.
Schummers
,
G. M.
Thomson
,
D. R.
James
,
I. R.
Gatland
, and
E. W.
McDaniel
,
Phys. Rev. A
7
,
683
(
1973
).
35.
R. H. Schultz and P. B. Armentrout, Int. J. Mass Spectrom. Ion Processes (accepted).
36.
M. E.
Weber
and
P. B.
Armentrout
,
J. Chem. Phys.
90
,
2213
(
1989
);
E. R.
Fisher
,
M. E.
Weber
, and
P. B.
Armentrout
,
J. Chem. Phys.
92
,
2296
(
1990
).
37.
K. E.
Shuler
,
J. Chem. Phys.
21
,
624
(
1953
).
38.
G. Herzberg, Molecular Spectra and Molecular Structure: III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1966), p. 591.
39.
See Ref. 12 for an analogous treatment of the C++Oz reaction.
40.
W. J.
Chesnavich
and
M. T.
Bowers
,
J. Chem. Phys.
68
,
901
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.