The frame transformation concept, which is standardly used in discussions of atomic and molecular Rydberg spectra, is applied to heavy particle scattering theory. It is shown how this approach permits the use of an optimal reference frame in the various different ranges of the scattering coordinate. It is further argued that the accuracy of the coupled states or p‐helicity decoupling approximations may be significantly improved without substantial additional computational effort especially for low energy scattering processes, through the use of frame transformation procedures. The method is then applied to the calculation of the photodissociation line shapes for the rotational predissociation of Ar–H2 within the framework of generalized multichannel quantum defect theory (MQDT). It is shown how the use of the frame transformation procedure yields reasonably correct product rotational state distributions in situations where the standard coupled states or body‐fixed decoupling procedure fails even at the qualitative level. The paper also reviews the application of generalized MQDT to heavy particle scattering processes.

1.
K.
Takayanagi
,
Comments Atom. Mol. Phys.
4
,
59
(
1973
).
2.
H.
Rabitz
,
J. Chem. Phys.
57
,
1718
(
1972
).
3.
R. D. Levine, in International Review of Science, edited by W. Byers Brown (Butterworths, London, 1972), Ser. 1, Vol. 1.
4.
R.
T Pack
,
J. Chem. Phys.
60
,
633
(
1974
).
5.
P.
McGuire
and
D. J.
Kouri
,
J. Chem. Phys.
60
,
2488
(
1974
).
6.
M.
Tamir
and
M.
Shapiro
,
Chem. Phys.
13
,
215
(
1976
).
7.
G. G.
Balint‐Kurti
,
J. H.
van Lenthe
,
R.
Saktreger
, and
L.
Eno
,
Comp. Phys. Commun.
19
,
359
(
1980
).
8.
A. E.
Depristo
and
M. H.
Alexander
,
J. Chem. Phys.
63
,
3552
(
1975
).
9.
J. M.
Launay
,
J. Phys. B
9
,
1823
(
1976
).
10.
E.
Segev
and
M.
Shapiro
,
J. Chem. Phys.
77
,
5604
(
1982
).
11.
B.
Lepetit
and
J. M.
Launay
,
Chem. Phys. Lett.
151
,
287
(
1988
).
12.
D. J. Kouri, in Atom‐Molecule Collision Theory, A Guide for the Experimentalist, edited by R. B. Berstein (Plenum, New York, 1979), Chap. 9.
13.
I. F.
Kidd
and
G. G.
Balint‐Kurti
,
J. Chem. Phys.
82
,
93
(
1985
).
14.
M.
Raoult
and
G. G.
Balint‐Kurti
,
Phys. Rev. Lett.
61
,
2538
(
1988
).
15.
C. H.
Greene
and
Ch.
Jungen
,
Adv. At. Mol. Phys.
21
,
51
(
1985
).
16.
C. H.
Greene
,
A. R. P.
Rau
, and
U.
Fano
,
Phys. Rev. A
26
,
2441
(
1982
).
17.
F. H.
Mies
,
J. Chem. Phys.
80
,
2514
(
1984
).
18.
F. H.
Mies
and
P. S.
Julienne
,
J. Chem. Phys.
80
,
2526
(
1984
).
19.
G. G. Balint‐Kurti, in International Review of Science, edited by A. D. Buckingham and C. A. Coulson (Butterworths, London, 1975), Ser. II, Vol. I.
20.
A. M.
Arthurs
and
A.
Dalgarno
,
Proc. R. Soc., London Ser. A
256
,
540
(
1960
).
21.
G. G.
Balint‐Kurti
and
M.
Shapiro
,
Chem. Phys.
61
,
137
(
1981
).
22.
U.
Fano
,
Phys. Rev. A
2
,
353
(
1970
).
23.
W. E.
Milne
,
Phys. Rev.
35
,
863
(
1930
).
24.
H. J.
Korsch
and
H.
Laurent
,
J. Phys. B
14
,
4213
(
1977
).
25.
M. J.
Seaton
,
Rep. Prog. Phys.
46
,
167
(
1983
).
26.
F. H. Mies and P. S. Julienne (private communication).
27.
B. R.
Johnson
,
J. Chem. Phys.
69
,
4678
(
1978
).
28.
P. S.
Dardi
,
S.
Shi
, and
W. H.
Miller
,
J. Chem. Phys.
83
,
575
(
1985
).
29.
R. J.
Le Roy
and
J. S.
Carley
,
Adv. Chem. Phys.
42
,
353
(
1980
).
30.
I. F.
Kidd
and
G. G.
Balint‐Kurti
,
Chem. Phys. Lett.
101
,
419
(
1983
).
31.
R. J.
Le Roy
,
G. C.
Corey
, and
J. M.
Hutson
,
Faraday Discuss. Chem. Soc.
73
,
339
(
1982
).
32.
I. F.
Kidd
and
G. G.
Balint‐Kurti
,
Faraday Discuss. Soc.
82
, paper
17
(
1986
).
33.
A. M.
Dunker
and
R. G.
Gordon
,
J. Chem. Phys.
68
,
700
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.