New methods of determining the steepest descent reaction path in dynamical calculations based on the reaction path Hamiltonian are investigated. These methods use first and second energy derivatives and are correct to third order in the Taylor series expansion of the path in the arc length. The reaction H+H2O→H2+OH using small basis set three electron‐three active orbital CASSCF wave functions with first and second analytically calculated energy derivatives is used as a test platform. Reaction paths using a number of different step sizes are computed and their accuracy determined by evaluating the deviations of the computed path curvature from the exact curvature and the RMS deviation of the computed transverse frequencies from the exact values, criteria more sensitive and more relevant to dynamical studies than are geometrical parameters. The new methods are compared to one another in computational efficiency and accuracy. For this example reaction and level of theory it is found that, in addition to being more accurate at any step size, the new methods are less expensive at any accuracy than those that utilize only first energy derivatives.

1.
W.
Miller
,
N.
Handy
, and
J.
Adams
,
J. Chem. Phys.
72
,
99
(
1980
).
2.
N.
Shida
,
J.
Almlöf
, and
P.
Barbara
,
Theor. Chim. Acta.
76
,
7
(
1989
).
3.
W.
Miller
,
B.
Ruf
, and
Y.
Chang
,
J. Chem. Phys.
89
,
6298
(
1988
).
4.
N.
Walet
,
A.
Klein
, and
G.
Dang
,
J. Chem. Phys.
91
,
2848
(
1989
).
5.
K.
Fukui
,
J. Phys. Chem.
74
,
4161
(
1970
).
6.
A.
Isaacson
,
D.
Truhlar
,
S.
Rai
,
R.
Steckler
,
G.
Hancock
,
B.
Garrett
, and
M.
Redmon
,
Comput. Phys. Commun.
47
,
91
(
1987
).
7.
K.
Baldridge
,
M.
Gordon
,
R.
Steckler
, and
D.
Truhlar
,
J. Phys. Chem.
93
,
5107
(
1989
).
8.
D.
Hoffman
,
R.
Nord
, and
K.
Ruedenberg
,
Theor. Chim. Acta.
69
,
265
(
1986
).
9.
M.
Page
and
J.
McIver
,
J. Chem. Phys.
88
,
922
(
1988
).
10.
K.
Ishida
,
K.
Morokuma
, and
A.
Komornicki
,
J. Chem. Phys.
66
,
2153
(
1977
).
11.
M.
Schmidt
,
M.
Gordon
, and
M.
Dupuis
,
J. Am. Chem. Soc.
107
,
2585
(
1985
).
12.
H.
Schlegel
,
Adv. Chem. Phys.
67
,
249
(
1987
).
13.
C.
Gonzalez
and
H.
Schlegel
,
J. Chem. Phys.
90
,
2154
(
1989
).
14.
B.
Garrett
,
M.
Redmon
,
R.
Steckler
,
D.
Truhlar
,
K.
Baldridge
,
D.
Bartol
,
M.
Schmidt
, and
M.
Gordon
,
J. Phys. Chem.
92
,
1476
(
1988
).
15.
K.
Müller
and
L.
Brown
,
Theor. Chim. Acta
53
,
75
(
1979
).
16.
C.
Baskin
,
C.
Bender
,
C.
Bauschlicher
, Jr.
, and
H.
Schaefer
III
,
J. Am. Chem. Soc.
96
,
2709
(
1974
).
17.
W.
Hase
and
R.
Duchovic
,
J. Chem. Phys.
83
,
3448
(
1985
).
18.
J.
Ischtwan
and
M.
Collins
,
J. Chem. Phys.
89
,
2881
(
1988
).
19.
S.
Koseki
and
M.
Gordon
,
J. Phys. Chem.
93
,
118
(
1989
).
20.
C.
Doubleday
,
J.
McIver
, and
M.
Page
,
J. Phys. Chem.
92
,
4367
(
1988
).
21.
N.
Caldwell
,
J.
Rice
,
H.
Nelson
,
G.
Adams
, and
M.
Page
,
J. Chem. Phys.
93
,
479
(
1990
).
22.
M.
Page
,
M. C.
Lin
,
Y.
He
and
T.
Choudhury
,
J. Phys. Chem.
93
,
4404
(
1989
).
23.
B.
Garrett
,
M.
Koszykowski
,
C.
Melius
, and
M.
Page
,
J. Phys. Chem.
94
,
7096
(
1990
).
24.
There is a striking resemblance between this scheme and perturbation analyses of wave functions in electronic structure theory. In that case the rows correspond to excited configurations and the columns to orders of perturbation theory. Thus, Hartree‐Fock plus second order many body perturbation theory includes contributions from single and double excitations (first two columns or QUAD method). A singles and doubles coupled cluster wave function, on the other hand, evaluates the contribution of single and double excitations to all orders in the Taylor series (perturbation) expansion and is the analogue of the LQA method. The fact that the first row has only one element corresponds, in the electronic structure case, to Brillouin’s theorem (single exitations only do not contribute), which arises from the Hartree‐Fock stationary condition. In the case of the MEP, steepest descent defines the stationary condition.
25.
D.
Truhlar
,
R.
Steckler
, and
M.
Gordon
,
Chem. Rev.
87
,
217
(
1987
).
26.
P.
Siegbahn
,
A.
Heiberg
,
B.
Roos
,
B.
Levy
,
Phys. Scr.
21
,
323
(
1980
).
27.
B.
Roos
,
P.
Taylor
,
P.
Siegbahn
,
Chem. Phys.
48
,
152
(
1980
).
28.
T.
Dunning
, Jr.
,
J. Chem. Phys.
53
,
2823
(
1970
).
29.
P. Hay, in Modern Theoretical Chemistry, Vol. 3, Methods of Electronic Structure Theory, edited by H. F. Schaefer III (Plenum, New York, 1977).
30.
P. Saxe, R. Martin, M. Page, and B. Lengsfield, MESA (molecular electronic structure applications).
This content is only available via PDF.
You do not currently have access to this content.