The formation of C2H is observed in two broad resonance bands when C2H2 is irradiated with vuv light. The higher‐energy band has partially resolved structure, approximately linear pressure dependence, and a threshold at 16.335±0.021 eV. It is attributed to photoion‐pair formation (C2H+H+) consequent upon predissociation of one or more Rydberg states. This threshold, together with IP(H) and EA(C2H), gives D0(HCC–H)≤5.706±0.022 eV≡131.6±0.5 kcal/mol, or ΔH0f0 (C2H)≤134.5±0.5 kcal/mol. The lower‐energy band has an approximately quadratic pressure dependence and curved step‐like structure. It is attributed to photoelectron‐induced dissociative attachment mediated by a πg shape resonance. The threshold, at 878.5±2.0 Å, corresponds to a photoelectron energy of 2.715±0.032 eV. This threshold combined with EA(C2H)=2.969±0.010 eV, yields D0(HCC–H)≤5.684±0.033 eV≡131.1±0.7 kcal/mol, or ΔH0f0 (C2H)=134.0±0.7 kcal/mol.

1.
V. P. Glushko, L. V. Gurvich, G. A. Bergman, I. V. Veits, V. A. Medvedev, G. A. Khachkuruzov, and V. S. Yungman, Termodinamicheski Svoistva Individual’nikh Vestchestv (Nauka, Moscow, 1979), Vol. 2.
2.
B.
Ruscic
,
J.
Berkowitz
,
L. A.
Curtiss
, and
J. A.
Pople
,
J. Chem. Phys.
91
,
114
(
1989
).
3.
H.
Shiromaru
,
Y.
Achiba
,
K.
Kimura
, and
Y. T.
Lee
,
J. Phys. Chem.
91
,
17
(
1987
).
4.
M. W.
Chase
, Jr.
,
C. A.
Davies
,
J. R.
Downey
, Jr.
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syverud
,
J. Phys. Chem. Ref. Data
14
, Suppl. 1,
1212
(
1985
).
5.
R.
Stockbauer
and
M. G.
Inghram
,
J. Chem. Phys.
62
,
4862
(
1975
).
6.
V. H.
Dibeler
,
J. A.
Walker
, and
K. E.
McCulloh
,
J. Chem. Phys.
59
,
2264
(
1973
).
7.
K.
Norwood
and
C. Y.
Ng
,
J. Chem. Phys.
91
,
2898
(
1989
).
8.
J.
Berkowitz
,
C. A.
Mayhew
, and
B.
Ruscic
,
J. Chem. Phys.
88
,
7396
(
1988
).
9.
K. M.
Ervin
,
S.
Gronert
,
S. E.
Barlow
,
M. K.
Gilles
,
A. G.
Harrison
,
V. M.
Bierbaum
,
C. H.
DePuy
,
W. C.
Lineberger
, and
G. B.
Ellison
,
J. Am. Chem. Soc.
112
,
5750
(
1990
).
10.
A. M.
Wodtke
,
E. J.
Hintsa
,
J.
Somorjai
, and
Y. T.
Lee
,
Isr. J. Chem.
29
,
383
(
1989
).
Note, however, that
J. J.
Russell
,
S. M.
Senkan
,
J. A.
Seetula
, and
D.
Gutman
[
J. Phys. Chem.
93
,
5184
(
1989
)] obtain D298(C2H3H) = 106.5±0.3 kcal/mol, equivalent to D0(C2H3H) = 105.1±0.3 kcal/mol.
11.
J. R.
Wyatt
and
F. E.
Stafford
,
J. Phys. Chem.
76
,
1913
(
1972
).
12.
J. Berkowitz, Photoabsorption, Photoionization and Photoelectron Spectroscopy (Academic, New York, 1979), p. 289.
13.
W. B.
Maier
II
,
J. Chem. Phys.
42
,
1790
(
1965
).
14.
Y.
Ono
and
C. Y.
Ng
,
J. Chem. Phys.
74
,
6985
(
1981
).
15.
A. M.
Wodtke
and
Y. T.
Lee
,
J. Phys. Chem.
89
,
4744
(
1985
).
16.
J.
Segall
,
R.
Lavi
,
Y.
Wen
, and
C.
Wittig
,
J. Phys. Chem.
93
,
7287
(
1989
).
17.
P. G.
Green
,
J. L.
Kinsey
, and
R. W.
Field
,
J. Chem. Phys.
91
,
5160
(
1989
).
18.
Yu. P.
Yampolskii
and
V. V.
Zelentsov
,
React. Kin. Catal. Lett.
17
,
347
(
1981
).
19.
P.
Frank
and
T.
Just
,
Combust. Flame
30
,
231
(
1980
);
C. H.
Wu
,
H. J.
Singh
, and
R. D.
Kern
,
Int. J. Chem. Kinet.
19
,
975
(
1987
).
20.
J.
Berkowitz
,
W. A.
Chupka
, and
T. A.
Walter
,
J. Chem. Phys.
50
,
1497
(
1969
).
21.
Ref. 12, p. 411.
22.
Ref. 12, pp. 134 and 136.
23.
(a)
V. H.
Dibeler
and
J. A.
Walker
,
Int. J. Mass. Spectrom. Ion Phys.
11
,
49
(
1973
);
(b) D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle, Molecular Photoelectron Spectroscopy (Wiley‐Interscience, London, 1970), pp. 190 and 191.
24.
L.
von Trepka
and
H.
Neuert
,
Z. Naturforsch.
18a
,
1295
(
1963
).
25.
R.
Locht
and
J.
Momigny
,
Chem. Phys. Lett.
6
,
273
(
1970
).
26.
R.
Azria
and
F.
Fiquet‐Fayard
,
J. Phys. (Paris)
33
,
663
(
1972
).
27.
C. R.
Bowman
and
W. D.
Miller
,
J. Chem. Phys.
42
,
681
(
1965
).
28.
D. F.
Dance
and
I. C.
Walker
,
J. Chem. Soc. Faraday Trans. 2
70
,
1426
(
1974
).
29.
E. H.
Van Veen
and
F. L.
Plantenga
,
Chem. Phys. Lett.
38
,
493
(
1976
).
30.
M. Tronc and L. Malegat, in Wavefunctions and Mechanisms from Electron Scattering Processes, edited by F. A. Gianturco and G. Stefani (Springer‐Verlag, Berlin, 1984), pp. 24–31.
31.
K.‐H.
Kochum
,
W.
Sohn
,
K.
Jung
,
H.
Ehrhardt
, and
E. S.
Chang
,
J. Phys. B
18
,
1253
(
1985
).
32.
V. I.
Khvostenko
and
G. A.
Tolstikov
,
Usp. Khimi.
45
,
251
(
1976
)
[
V. I.
Khvostenko
and
G. A.
Tolstikov
,
Russ. Chem. Rev.
45
,
127
(
1976
)].
33.
T. F.
O’Malley
,
Phys. Rev.
150
,
14
(
1966
).
34.
D.
Rapp
and
D. D.
Briglia
,
J. Chem. Phys.
43
,
1480
(
1965
);
D.
Rapp
,
T. E.
Sharp
, and
D. D.
Briglia
,
Phys. Rev. Lett.
14
,
533
(
1965
).
35.
G. J.
Schulz
and
R. K.
Asundi
,
Phys. Rev. Lett.
15
,
946
(
1965
).
36.
S. Y.
Chu
and
L.
Goodman
,
J. Am. Chem. Soc.
97
,
7
(
1975
).
37.
K. T.
Jordan
and
P. D.
Barrow
,
Chem. Rev.
87
,
557
(
1987
).
38.
E. P.
Wigner
,
Phys. Rev.
73
,
1002
(
1948
).
39.
P. J.
Chantry
,
J. Chem. Phys.
55
,
2746
(
1971
).
40.
K.
Vasudevan
and
F.
Grein
,
J. Chem. Phys.
68
,
1418
(
1978
);
see also, L. A. Curtiss (private communication).
41.
D. W. Chandler (private communication); D. P. Baldwin, M. A. Buntine, and D. W. Chandler, Photodissociation of Acetylene in the 201‐216 nm Region: Determination of D0(HCCH), 45th Ohio State University Symposium on Molecular Spectroscopy, Abstracts, p. 189, Columbus, Ohio, June 11–15, 1990.
This content is only available via PDF.
You do not currently have access to this content.