Collinear molecular beam photodepletion was used to obtain particle specific electronic absorption information for Na3, Na4, and Na8 in a wavelength range from 370–835 nm. We critically discuss the experimental method used and the deconvolution procedure applied to the resulting data to yield absolute absorption cross sections. The spectra contain much information on the cluster‐size–dependent transition from molecular to bulk‐like optical response and are interpreted in terms of various computational approaches ranging from classical electrostatic to abinitio large scale configuration interaction.

1.
P.
Foster
,
R.
Leckenby
, and
E.
Robbins
,
J. Phys. B
2
,
478
(
1969
);
A.
Herrmann
,
S.
Leutwyler
,
E.
Schumacher
, and
L.
Wöste
,
Helv. Chim. Acta
61
,
453
(
1978
);
K.
Sattler
,
J.
Mühlbach
, and
E.
Recknagel
,
Phys. Rev. Lett.
45
,
821
(
1980
);
T.
Dietz
,
M.
Duncan
,
D.
Powers
, and
R.
Smalley
,
J. Chem. Phys.
74
,
6511
(
1981
);
S.
Riley
,
E.
Parks
,
L.
Pobo
, and
S.
Wexler
,
J. Chem. Phys.
79
,
2577
(
1983
).
2.
See, for example,
M.
Kappes
,
M.
Schär
,
P.
Radi
, and
E.
Schumacher
,
J. Chem. Phys.
84
,
1863
(
1986
).
3.
See, for example,
A.
Kaldor
,
D.
Cox
, and
M.
Zakin
,
Adv. Chem. Phys.
70
,
121
,
1988.
4.
See, for example,
M.
Kappes
,
R.
Kunz
, and
E.
Schumacher
,
Chem. Phys. Lett.
91
,
413
(
1982
);
W.
Knight
,
K.
Clemenger
,
W.
de Heer
,
W.
Saunders
,
M.
Chou
, and
M.
Cohen
,
Phys. Rev. Lett.
52
,
2141
(
1984
).
5.
W.
Knight
,
K.
Clemenger
,
W.
de Heer
, and
W.
Saunders
,
Phys. Rev. B
31
,
2539
(
1985
).
6.
J.
Gole
,
G.
Green
,
S.
Pace
, and
D.
Preuss
,
J. Chem. Phys.
76
,
2247
(
1982
) (Na3);
E.
Rohlfing
and
J.
Valentini
,
Chem. Phys. Lett.
126
,
113
(
1986
) (Cu3);
W.
Crumley
,
J.
Hayden
, and
J.
Gole
,
J. Chem. Phys.
84
,
5250
(
1986
) lpar;Cu3);
J.
Woodward
,
S.
Cobb
, and
J.
Gole
,
J. Phys. Chem.
92
,
1404
(
1988
). (Ni3).
7.
P.
Cheng
and
M.
Duncan
,
Chem. Phys. Lett.
152
,
341
(
1988
) (Ag3);
M.
Morse
,
J.
Hopkins
,
P.
Langridge‐Smith
, and
R.
Smalley
,
J. Chem. Phys.
79
,
1236
(
1983
). (Cu3);
P. Radi, M. Schär, E. Schumacher, and M. Kappes (to be published) (LiNa2,Li2Na);
Z.
Fu
,
G.
Lemire
,
Y.
Hanrick
,
S.
Taylor
,
J.
Shui
, and
M.
Morse
,
J. Chem. Phys.
88
,
3524
(
1988
) (Al3);
G.
Delacretaz
,
E.
Grant
,
R.
Whetten
,
L.
Wöste
, and
J.
Zwanziger
,
Phys. Rev. Lett.
56
2598
(
1986
) (Na3).
8.
D.
Leopold
,
J.
Ho
, and
W.
Lineberger
,
J. Chem. Phys.
86
,
1715
(
1987
);
O. Cheshnovsky, P. Brucat, S. Yang, C. Petiette, M. Craycraft, and R. Smalley, in Physics and Chemistry of Small Clusters, Proceedings of the NATO Advanced Research Workshop, Richmond, 1986, edited by P. Jena, B. Rao, and S. Khanna (Plenum, New York, 1987).
9.
M.
Jarrold
and
K.
Creegan
,
Chem. Phys. Lett.
166
,
116
(
1990
).
10.
C.
Petiette
,
S.
Yang
,
M.
Craycraft
,
J.
Conceicao
,
R.
Laaksonen
,
O.
Cheshnovsky
, and
R.
Smalley
,
J. Chem. Phys.
88
,
5377
(
1988
).
11.
O.
Cheshnovsky
,
K.
Taylor
,
J.
Conceicao
, and
R.
Smalley
,
Phys. Rev. Lett.
64
,
1785
(
1990
).
12.
W.
de Heer
,
K.
Selby
,
V.
Kresin
,
J.
Masui
,
M.
Vollmer
,
A.
Chatelain
, and
W.
Knight
,
Phys. Rev. Lett.
59
,
1805
(
1987
).
13.
K.
Selby
,
M.
Vollmer
,
J.
Masui
,
V.
Kresin
,
W.
de Heer
, and
W.
Knight
,
Z. Physik D
12
,
477
(
1989
).
14.
K.
Selby
,
M.
Vollmer
,
J.
Masui
,
V.
Kresin
,
W.
de Heer
, and
W.
Knight
,
Phys. Rev. B
40
,
5417
(
1989
).
15.
C.
Brechignac
and
P.
Cahuzac
,
Chem. Phys. Lett.
164
,
433
(
1989
).
16.
K.
McHugh
,
J.
Eaton
,
G.
Lee
,
H.
Sarkas
,
L.
Kider
,
J.
Snodgrass
,
M.
Manaa
, and
K.
Bowen
,
J. Chem. Phys.
91
,
3792
(
1989
).
17.
G. Ganteför, M. Gausa, K. Meiwes‐Broer, and H. Lutz, J. Chem. Soc. Faraday Trans. (in press).
18.
M. Jarrold and K. Creegan, J. Chem. Soc. Faraday, Trans. (in press); Int. J. Mass Spec. Ion Phys. (in press).
19.
M. Broyer et al. (to be published).
20.
H.
Fallgren
and
T.
Martin
,
Chem. Phys. Lett.
168
,
233
(
1990
).
21.
W.
Ekardt
,
Phys. Rev. Lett.
52
,
1925
(
1984
);
W.
Ekardt
,
Phys. Rev. B
31
,
6330
(
1985
).
22.
M.
Puska
,
R.
Nieminen
, and
M.
Manninen
,
Phys. Rev. B
31
,
3486
(
1985
).
23.
C.
Yannouleas
,
R.
Broglia
,
M.
Brack
, and
P.
Bortignon
,
Phys. Rev. Lett.
63
,
255
(
1989
).
24.
V.
Bonacic‐Koutecky
,
P.
Fantucci
, and
J.
Koutecky
,
Chem. Phys. Lett.
146
,
518
(
1988
).
25.
V.
Bonacic‐Koutecky
,
P.
Fantucci
, and
J.
Koutecky
,
J. Chem. Phys.
91
,
3794
(
1989
).
26.
V. Bonacic‐Koutecky, P. Fantucci, and J. Koutecky, J. Chem. Phys. (this issue).
27.
V. Bonacic‐Koutecky, M. Kappes, G. Fantucci, and J. Koutecky, Chem. Phys. Lett. (in press).
28.
G.
Mie
,
Ann. Physik
25
,
377
(
1908
).
29.
R.
Gans
,
Ann. Physik
47
,
270
(
1915
).
30.
V.
Bonacic‐Koutecky
,
P.
Fantucci
, and
J.
Koutecky
,
Chem. Phys. Lett.
166
,
32
(
1990
).
31.
C.
Wang
,
S.
Pollack
, and
M.
Kappes
,
Chem. Phys. Lett.
166
,
26
(
1990
).
32.
Depletion spectroscopy has been extensively applied to cluster studies; see, for example,
M.
Vernon
,
J.
Lisy
,
H.
Kwok
,
D.
Krajnovich
,
A.
Tramer
,
Y.
Shen
, and
Y.
Lee
,
J. Phys. Chem.
85
,
3327
(
1981
);
D.
Michael
and
J.
Lisy
,
J. Chem. Phys.
85
,
2528
(
1986
).
33.
S.
Pollack
,
C.
Wang
, and
M.
Kappes
,
Z. Physik D
12
,
241
(
1989
).
34.
M.
Kappes
,
Chem. Rev.
88
,
369
(
1988
).
35.
M.
Kappes
,
M.
Schär
,
E.
Schumacher
, and
A.
Vayloyan
,
Z. Physik D
5
,
359
(
1987
).
36.
Calculations were performed using the SIMION package. We thank D. Dahl of EG&G Idaho Inc. for providing the software.
37.
This is likely only a poor approximation as cluster densities in monomer expansions are known to be strongly peaked along the beam center line. See, for example, M. Kappes and S. Leutwyler, in Atomic and Molecular Beam Methods, edited by G. Scoles (Oxford University, Oxford, 1989).
38.
Five experiments had to be performed without intermediate window cleaning in order to generate a visible film (<1016cm2s−1 total atom flux incident on a 250°C sapphire surface for a total of 10 h).
39.
C. Wang, S. Pollack, and M. Kappes (to be published).
40.
M.
Vollmer
,
K.
Selby
,
V.
Kresin
,
J.
Masui
,
M.
Kruger
, and
W.
Knight
,
Rev. Sci. Intrum.
59
,
1965
(
1988
).
41.
Collinear irradiation can give rise to a major perturbation of formation processes thus complicating velocity analysis.
42.
D. Miller, in Atomic and Molecular Beam Methods, edited by G. Scoles (Oxford University, Oxford, 1988).
43.
As in the case of depletion measurements, Na3 R2PI probes were carried out in a laser fluence range which ensured linearity [i.e., S(Na3+)αI2].
44.
V.
Bonacic‐Koutecky
,
P.
Fantucci
, and
J.
Koutecky
,
Phys. Rev. B
37
,
4369
(
1988
).
45.
C.
Brechnignac
,
P.
Cahuzac
,
J.
Roux
,
D.
Pavolini
, and
F.
Spiegelmann
,
J. Chem. Phys.
87
,
5694
(
1987
);
C.
Brechnignac
,
P.
Cahuzac
, and
J.
Roux
,
J. Chem. Phys.
90
,
1492
(
1989
).,
J. Chem. Phys.
46.
M.
Kappes
,
M.
Schär
,
U.
Röthlisberger
,
C.
Yeretzian
, and
E.
Schumacher
,
Chem. Phys. Lett.
143
,
251
(
1988
).
47.
J. Steinfeld, J. Francisco, and W. Hase, Chemical Kinetics and Dynamics (Prentice Hall, Englewood Cliffs, 1989).
48.
M.
Jarrold
and
J.
Bower
,
J. Chem. Phys.
87
,
5728
(
1987
);
U.
Ray
,
M.
Jarrold
,
J.
Bower
, and
J.
Kraus
,
Chem. Phys. Lett.
159
,
221
(
1989
);
U.
Ray
,
M.
Jarrold
,
J.
Bower
, and
J.
Kraus
,
J. Chem. Phys.
91
,
2912
(
1989
).
49.
Temperature sources: Na3 from R2PI spectroscopic assignment, see Ref. 52; Na4 from Ref. 88, which for similar beam conditions contains a parameterization procedure and analysis for the onset region of photoionization efficiency curves and Na8 by comparison to Ref. 64 (see also Ref. 84). The Na8 number is also in good agreement with that obtained from Ref. 88. The selection is admittedly somewhat arbitrary but comprises the only methods presently available to obtain temperature information on sodium cluster beams.
50.
C.
Brechignac
,
P.
Cahuzac
,
R.
Pflaum
, and
J.
Roux
,
J. Chem. Phys.
88
,
3732
(
1988
).
51.
D.
Lindsay
,
Y.
Wang
, and
T.
George
,
J. Chem. Phys.
86
,
3500
(
1987
).
52.
A.
Herrmann
,
M.
Hofmann
,
S.
Leutwyler
,
E.
Schumacher
, and
L.
Wöste
,
Chem. Phys. Lett.
62
,
216
(
1979
).
53.
M.
Broyer
,
G.
Delacretaz
,
G.
Ni
,
R.
Whetten
,
J.
Wolf
, and
L.
Wöste
,
J. Chem. Phys.
90
,
4620
(
1989
);
M.
Broyer
,
G.
Delacretaz
,
N.
Guoquan
,
J.
Wolf
, and
L.
Wöste
,
Chem. Phys. Lett.
145
,
232
(
1988
).
54.
M.
Broyer
,
G.
Delacretaz
,
P.
Labastie
,
J.
Wolf
, and
L.
Wöste
,
Phys. Rev. Lett.
57
,
185
(
1986
).
55.
The Na3C‐state one‐color R2PI measurement appears to show vibrational structure. This is an ion cross‐talk artifact arising from the underlying Na2X→B transition.
56.
G.
Jeung
,
M.
Broyer
, and
P.
Labastie
,
Chem. Phys. Lett.
165
,
494
(
1990
).
See, also,
D.
Pavolini
and
F.
Spiegelmann
,
J. Chem. Phys.
87
,
2854
(
1987
).
57.
Based on an experimentally determined volume plasmon energy of 5.71 eV. C. Kittel, in Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976), p. 293. Note that applying the Drude model to measurements of the frequency dependence of the real part of the dielectric constant of bulk sodium gives an ω0 of 388 nm. In contrast, using electron densities determined from the Wigner‐Seitz radius, one obtains a Drude ω0 of 361 nm.
58.
M.
Broyer
,
G.
Delacretaz
,
P.
Labastie
,
J.
Wolf
, and
L.
Wöste
,
J. Phys. Chem.
91
,
2626
(
1987
).
59.
F.
Cocchini
,
T.
Upton
, and
W.
Andreoni
,
J. Chem. Phys.
88
,
6068
(
1988
).
60.
T.
Welker
and
T.
Martin
,
J. Chem. Phys.
70
,
5683
(
1979
).
61.
M.
Hofmann
,
S.
Leutwyler
, and
W.
Schulze
,
Chem. Phys.
40
,
145
(
1979
).
62.
The near‐IR absorption spectrum of sodium vapor is also informative in this regard:
A.
Vasilakis
,
N.
Bhaskar
, and
W.
Happer
,
J. Chem. Phys.
73
,
1490
(
1980
).
63.
M. Hoffmann, Ph.D. thesis, University of Bern, Bern, Switzerland, 1980.
64.
J.
Pacheco
and
R.
Broglia
,
Phys. Rev. Lett.
62
,
1400
(
1989
).
65.
This conclusion can also be reached by comparing neutral cluster beam abundance distributions pertaining (Refs. 34, 64, 66, 84, and 88).
66.
W.
de Heer
,
W.
Knight
,
M.
Chou
, and
M.
Cohen
,
Solid State Phys.
40
,
93
(
1987
).
67.
R.
Martin
and
E.
Davidson
,
Mol. Phys.
35
,
1713
(
1978
);
J.
Martins
,
R.
Car
, and
J.
Buttet
,
J. Chem. Phys.
78
,
5646
(
1983
).
68.
J.
Martins
,
J.
Buttet
, and
R.
Car
,
Phys. Rev. B
31
,
1804
(
1985
);
J.
Martins
,
J.
Buttet
, and
R.
Car
,
Phys. Rev. Lett.
53
,
655
(
1984
).
69.
M.
McAdon
, and
W.
Goddard
III
,
Phys. Rev. Lett.
55
,
2563
(
1985
).
70.
I.
Boustani
,
W.
Pewestorf
,
P.
Fantucci
,
V.
Bonacic‐Koutecky
, and
J.
Koutecky
,
Phys. Rev. B
35
,
9437
(
1987
).
71.
C.
Gatti
,
P.
Fantucci
, and
G.
Pacchioni
,
Theor. Chim. Acta
72
,
433
(
1987
).
72.
B.
Rao
,
S.
Khanna
, and
P.
Jena
,
Chem. Phys. Lett.
121
,
202
(
1985
).
73.
The same ground state equilibrium topology also results from geometry optimized Car‐Parrinello local density calculations:
U.
Röthlisberger
and
W.
Andreoni
(to be published); see also,
P.
Ballone
,
W.
Andreoni
,
R.
Car
, and
M.
Parrinello
,
Europhysics Letters
8
,
73
(
1989
).
74.
J.
Koutecky
and
P.
Fantucci
,
Chem. Rev.
32
,
2058
(
1986
).
75.
I.
Boustani
, and
J.
Koutecky
,
J. Chem. Phys.
88
,
5657
(
1988
).
76.
See, for example,
M.
Smithard
and
M.
Tran
,
Helv. Phys. Acta
46
,
869
(
1974
).
77.
W.
Ekardt
and
Z.
Penzar
,
Phys. Rev. B
38
,
4273
(
1988
).
78.
K.
Clemenger
,
Phys. Rev. B
32
,
1359
(
1985
);
K. Clemenger, Ph.D. thesis, University of California at Berkeley, Berkeley, 1986.
79.
J.
Parks
and
S.
McDonald
,
Phys. Rev. Lett.
62
,
2301
(
1989
).
80.
Preliminary photodepletion spectra at about the same signal to noise as those shown here are now being obtained for Na20. It appears that the dominant absorption feature inferred previously to be centered at 490 nm is part of a doublet with the second peak located near 440 nm (Ref. 89).
81.
J.
Osborn
,
Phys. Rev.
67
,
351
(
1945
).
82.
J.
Perenboom
,
P.
Wyder
, and
F.
Meier
,
Phys. Reports
78
,
174
(
1981
).
83.
Predicted cross sections are Na3 (502 nm: 14.2 Å2; 688 nm: 9.7 Å2); Na4 (440 nm: 22.0 Å2; 680 nm: 16.9 Å2) and Na8 (478 nm: 30.8 Å2).
84.
Spheroidally distorted jellium calculations may be used to get a rough potential energy surface (Ref. 78). Spheroidal distortions of metal spheres induce a characteristic surface plasmon splitting (see text). Given the potential surface and assuming a continuous vibrational state density, the thermally averaged optical response may be obtained by integration over the sampling probability (Ref. 64). Resonance widths for Na8 have been so determined at temperatures of 50, 150, and 300 K, respectively. Interpolating among these curves, our Na8 measurement has a FWHM compatible with an internal temperature of 200 K.
85.
It appears that RPA prediction can be improved by using a potential which is slightly perturbed relative to the jellium mean field. Then the calculation predicts a dominant transition at 2.5 eV, a smaller one at 1.93 eV and a high energy shoulder to the blue of the “surface plasmon” which is similar to that seen in experiment: R. Broglia et al. (to be published).
86.
D.
Mann
and
H.
Broida
,
J. Appl. Phys.
44
,
4950
(
1973
).
87.
P.
Engelking
,
J. Chem. Phys.
85
,
3103
(
1985
);
P.
Engelking
,
87
,
936
(
1987
).,
J. Chem. Phys.
88.
U. Röthlisberger, Diploma thesis, University of Bern, Bern, 1988;
U.
Röthlisberger
,
M.
Schär
, and
E.
Schumacher
,
Z. Physik D
13
,
171
(
1989
).
89.
C. Wang, S. Pollack, and M. Kappes (to be published).
This content is only available via PDF.
You do not currently have access to this content.