A method is introduced that is easy to implement and greatly reduces the systematic error resulting from quasi‐ergodicity, or incomplete sampling of configuration space, in Monte Carlo simulations of systems containing large potential energy barriers. The method makes possible the jumping over these barriers by coupling the usual Metropolis sampling to the Boltzmann distribution generated by another random walker at a higher temperature. The basic techniques are illustrated on some simple classical systems, beginning for heuristic purposes with a simple one‐dimensional double well potential based on a quartic polynomial. The method’s suitability for typical multidimensional Monte Carlo systems is demonstrated by extending the double well potential to several dimensions, and then by applying the method to a multiparticle cluster system consisting of argon atoms bound by pairwise Lennard‐Jones potentials. Remarkable improvements are demonstrated in the convergence rate for the cluster configuration energy, and especially for the heat capacity, at temperatures near the cluster melting transition region. Moreover, these improvements can be obtained even in the worst‐case scenario where the clusters are initialized from random configurations.

1.
N.
Metropolis
,
A.
Rosenbluth
,
M. N.
Rosenbluth
,
A.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
2.
M. P. Allen and D. J. Tildesley, in Computer Simulation of Liquids (Clarendon Press, Oxford, 1987), Ch. 4, pp. 114–119.
3.
J. P. Valleau and S. G. Whittington, in Statistical Mechanics, edited by B. J. Berne (Plenum, New York, 1977), Ch. 4, p. 145.
4.
J. P. Valleau and G. M. Torrie, in Statistical Mechanics, edited by B. J. Berne (Plenum, New York, 1977), Ch. 5, p. 169.
5.
A. F.
Voter
,
J. Chem. Phys.
82
,
1890
(
1984
).
6.
J.
Cao
and
B. J.
Berne
,
J. Chem. Phys.
92
,
1980
(
1990
).
7.
See
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Comput. Phys.
3
,
101
(
1989
) and references therein.
8.
M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (Wiley, New York, 1986), Ch. 3, pp. 73–83.
9.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986), Ch. 4, pp. 114–120.
10.
T. L.
Beck
and
R. S.
Berry
,
J. Chem. Phys.
88
,
3910
(
1988
);
T. L. Beck and R. S. Berry, in The Physics and Chemistry of Small Clusters, edited by P. Jena, B. K. Rao, and S. N. Khanna (Plenum, New York, 1987).
11.
R. S. Berry, T. L. Beck, H. L. Davis, and J. Jellinek, in Advances in Chemical Physics, edited by I. Prigogine and S. A. Rice (Wiley, New York, 1988), Vol. 70B,p. 75.
12.
J.
Jellinek
,
T. L.
Beck
, and
R. S.
Berry
,
J. Chem. Phys.
84
,
2783
(
1986
);
T. L.
Beck
,
J.
Jellinek
, and
R. S.
Berry
,
J. Chem. Phys.
87
,
545
(
1987
).
13.
M. R.
Hoare
and
P.
Pal
,
Adv. Phys.
20
,
161
(
1971
).
14.
J. B.
Kaelberer
and
R. D.
Etters
,
J. Chem. Phys.
66
,
3233
(
1977
);
R. D.
Etters
and
J. B.
Kaelberer
,
J. Chem. Phys.
66
,
5112
(
1977
).
15.
H. L.
Davis
,
J.
Jellinek
, and
R. S.
Berry
,
J. Chem. Phys.
86
,
6456
(
1987
).
16.
F.
Amar
and
R. S.
Berry
,
J. Chem. Phys.
85
,
5943
(
1986
).
17.
C. L.
Briant
and
J. J.
Burton
,
J. Chem. Phys.
63
,
2045
(
1975
).
18.
D. L. Freeman and J. D. Doll, in Advances in Chemical Physics, edited by I. Prigogine and S. A. Rice (Wiley, New York, 1988), Vol. 70B, p. 139.
19.
R. D.
Etters
and
J. B.
Kaelberer
,
Phys. Rev. A
11
,
1068
(
1975
).
20.
N.
Quirke
and
P.
Sheng
,
Chem. Phys. Lett.
110
,
63
(
1984
).
21.
J. K.
Lee
,
J. A.
Barker
, and
F. F.
Abraham
,
J. Chem. Phys.
58
,
3166
(
1973
).
22.
All calculations were performed on a DEC3100 UNIX workstation with approximately 5 Mb of free memory.
23.
K. Binder and D. W. Heermann, in Monte Carlo Simulation in Statistical Physics, edited by P. Fulde (Springer, Berlin, 1988), Vol. 80, Ch. 3, pp. 77–79.
24.
S. Apiki and H. Eglowstein, Byte, October, 160 (1989).
25.
J. J. Burke and B. Ryan, Byte, October 259 (1989).
This content is only available via PDF.
You do not currently have access to this content.