We have investigated the diffusion of clusters on a triangular lattice using Monte Carlo simulations. A cluster is defined as a two‐dimensional collection of particles which are connected to each other, either directly or indirectly through other particles in the cluster, by nearest‐neighbor bonds. Each particle is allowed to hop, with probability αδb/2/(α−δb/2δb/2), to a vacant nearest‐neighbor site with the constraint that the hop does not break the cluster. The change in the number of bonds is given by δb. The equilibrium clusters are correlated animals with structure controlled by the parameter α. We show that the diffusion coefficient of a cluster can be decomposed into two factors. One is a measure of the weighted length of the ‘‘active’’ perimeter and the other is a measure of the correlation between pairs of steps taken by the cluster during its walk. The perimeter measure is asymptotically proportional to cluster size N, as anticipated for ramified animals, but it crosses over to N1/2 dependence for smaller compact clusters with α>1. Our focus is on the accurate determination of the size and structure dependence of the correlation factor, which is more sensitive to statistical fluctuations. As a result, we describe the scaling of the cluster diffusion coefficient with cluster size.

1.
G.
Ehrlich
and
F. D.
Hudda
,
J. Chem. Phys.
44
,
1039
(
1966
).
2.
D. W.
Bassett
and
M. J.
Parsley
,
Nature (London)
221
,
1046
(
1969
).
3.
G.
Ehrlich
,
CRC Crit. Rev. Solid State Sci.
4
,
205
(
1974
).
4.
W. R.
Graham
and
G.
Ehrlich
,
J. Phys. F
4
,
L212
(
1974
).
5.
T.
Sakata
and
S.
Nakamura
,
Surf. Sci.
51
,
313
(
1975
).
6.
T. T.
Tsong
,
P.
Cowan
, and
G.
Kellogg
,
Thin Solid Films
25
,
97
(
1975
).
7.
D. W.
Bassett
,
J. Phys. C
9
,
2491
(
1976
).
8.
K.
Stolt
,
W. R.
Graham
, and
G.
Ehrlich
,
J. Chem. Phys.
65
,
3206
(
1976
).
9.
J. C.
Tully
,
G. H.
Gilmer
, and
M.
Shugard
,
J. Chem. Phys.
71
,
1630
(
1979
).
10.
S. H.
Garofalini
,
T.
Halichioglu
, and
G. M.
Pound
,
J. Vac. Sci. Tech.
19
,
717
(
1981
).
11.
S. H.
Garofalini
,
T.
Halichioglu
, and
G. M.
Pound
,
Surf. Sci.
114
,
161
(
1982
).
12.
S. M.
Levine
and
S. H.
Garofalini
,
Surf. Sci.
163
,
59
(
1985
).
13.
A. F.
Voter
,
Phys. Rev. B
34
,
6819
(
1986
).
14.
J. D.
Doll
and
A. F.
Voter
,
Annu. Rev. Phys. Chem.
38
,
413
(
1987
).
15.
K.
Kitihara
,
H.
Metiu
,
J.
Ross
, and
R.
Silbey
,
J. Chem. Phys.
65
,
2871
(
1976
).
16.
U.
Landman
and
M. F.
Schlesinger
,
Phys. Rev. B
16
,
3389
(
1977
).
17.
S.
Efrima
and
H.
Metiu
,
J. Chem. Phys.
69
,
2286
(
1978
).
18.
D. A.
Reed
and
G.
Ehrlich
,
J. Chem. Phys.
64
,
4616
(
1976
).
19.
J. D.
Wrigley
,
D. A.
Reed
, and
G.
Ehrlich
,
J. Chem. Phys.
67
,
781
(
1977
).
20.
U. M.
Titulaer
and
J. M.
Deutch
,
J. Chem. Phys.
77
,
472
(
1982
).
21.
D. E.
Sanders
and
J. W.
Evans
,
Phys. Rev. A
38
,
4186
(
1988
).
22.
One expects that the fractal dimension for the correlated animals, in the limit of large N, to be equal to that for random animals, i.e., approximately 3/2 (see Ref. 26).
23.
If the sampling were done at equal numbers of successful moves, the averages obtained would not be equivalent to the ergodic averages because different cluster types have different lifetimes.
24.
C.
Domb
and
E.
Stoll
,
J. Phys. A
10
,
1141
(
1977
).
25.
J. A. M. S.
Durate
,
Lett. Nuovo Cimento
22
,
707
(
1978
).
26.
D.
Stauffer
,
Phys. Rep.
54
,
1
(
1979
).
27.
H. C.
Kang
and
W. H.
Weinberg
,
J. Chem. Phys.
90
,
2824
(
1989
).
28.
H.
Gould
and
K.
Holl
,
J. Phys. A
14
,
L443
L451
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.