Feynman’s path integral formulation of quantum mechanics is used to study the correlated electronic states of Na4–Na6. Two types of simulations are performed: in the first, the nuclei are allowed to move at finite temperature in order to find the most stable geometries. In agreement with previous calculations, we find that planar structures are the most stable and that there is significant vibrational amplitude at finite temperatures, indicating that the Born–Oppenheimer surface is relatively flat. In the second type of simulation, the nuclei are held fixed at symmetric and asymmetric geometries and the correlated electron density is found. Our results show that the electrons are localized, rather than delocalized as previous workers have concluded from examination of the single‐particle orbitals. We find that the best picture of these clusters is that they contain three‐center, two‐electron bonds.

1.
H.
Frölich
,
Physica
,
4
,
406
(
1937
);
R.
Kubo
,
J. Phys. Soc. Jpn.
17
,
975
(
1962
);
L.
Gor’kov
and
G.
Eliashberg
,
Sov. Phys. JETP
21
,
940
(
1965
);
S.
Strässler
,
M.
Rice
, and
P.
Wyder
,
Phys. Rev. B
6
,
2575
(
1972
);
M.
Rice
,
W.
Schneider
, and
S.
Strässler
,
Phys. Rev. B
8
,
474
(
1973
); ,
Phys. Rev. B
R.
Denton
,
B.
Mühlschlegel
, and
D.
Scalapino
,
Phys. Rev. Lett.
26
,
707
(
1971
);
D.
Wood
and
N.
Ashcroft
,
Phys. Rev. B
25
,
6255
(
1982
).
2.
N. F. Mott, Metal‐Insulator Transitions (Taylor and Francis, London, 1974);
Localization and Metal‐Insulator Transitions, edited by H. Fritzsche and D. Adler (Plenum, New York, 1985);
R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983).
3.
M.
Broyer
,
G.
Delacrétaz
,
G.‐Q.
Ni
,
R. L.
Whetten
,
J.‐P.
Wolr
, and
L.
Wöste
,
Phys. Rev. Lett.
62
,
2100
(
1989
);
M. M.
Kappes
,
M.
Schär
,
U.
Röthlisberger
,
C.
Yeretzian
, and
E.
Schumacher
,
Chem. Phys. Lett.
143
,
251
(
1988
);
C.
Bréchignac
,
Ph.
Cahuzac
, and
J. Ph.
Roux
,
J. Chem. Phys.
87
,
229
(
1987
);
M. M.
Kappes
,
M.
Schär
,
P.
Radi
, and
E.
Schumacher
,
J. Chem. Phys.
84
,
1863
(
1986
).,
J. Chem. Phys.
4.
C.
Bréchignac
,
Ph.
Cahuzac
,
F.
Carlier
, and
J.
Leygnier
,
Phys. Rev. Lett.
63
,
1369
(
1989
);
M. M.
Kappes
,
P.
Radi
,
M.
Schär
, and
E.
Schumacher
,
Chem. Phys. Lett.
119
,
11
(
1985
);
A.
Hermann
,
E.
Schumacher
, and
L.
Wöste
,
J. Chem. Phys.
68
,
2327
(
1978
);
J.‐P.
Wolf
,
G.
Delacrétaz
, and
L.
Wöste
,
Phys. Rev. Lett.
63
,
1946
(
1989
).
5.
W. D.
Knight
,
W. A.
deHeer
,
K.
Clemenger
, and
W. A.
Saunders
,
Solid State Commun.
53
,
445
(
1985
).
6.
W. D.
Knight
,
K.
Clemenger
,
W. A.
deHeer
,
W. A.
Saunders
,
M. Y.
Chou
, and
M. L.
Cohen
,
Phys. Rev. Lett.
52
,
2141
(
1984
).
7.
W.
Miehle
,
O.
Kandler
,
T.
Leisner
, and
O.
Echt
,
J. Chem. Phys.
91
,
5940
(
1989
);
I. A.
Harris
,
L. A.
Norman
,
R. V.
Mulkern
,
J. A.
Northby
,
O.
Echt
,
K.
Sattler
, and
E.
Recknagel
,
Chem. Phys. Lett.
130
,
316
(
1986
);
O.
Echt
,
K.
Sattler
, and
E.
Recknagel
,
Phys. Rev. Lett.
47
,
1121
(
1981
);
J.
Mühlbach
,
E.
Recknagel
, and
K.
Sattler
,
Surf. Sci.
106
,
188
(
1981
).
8.
G. F.
Bertsch
and
D.
Tománek
,
Phys. Rev. B
40
,
2749
(
1989
);
W. D.
Knight
,
W. A.
deHeer
,
K.
Clemenger
,
M. Y.
Chou
, and
M. L.
Cohen
,
Chem. Phys. Lett.
134
,
1
(
1987
);
S.
Saito
and
M. L.
Cohen
,
Phys. Rev. B
38
,
1123
(
1988
);
S. B.
Zhang
,
M. L.
Cohen
, and
M. Y.
Chou
,
Phys. Rev. B
36
,
3455
(
1987
); ,
Phys. Rev. B
M. Y.
Chou
,
A.
Cleland
, and
M. L.
Cohen
,
Solid State Commun.
52
,
645
(
1984
);
K.
Clemenger
,
Phys. Rev. B
32
,
1359
(
1985
).
9.
J. L.
Martins
,
R.
Car
, and
J.
Buttet
,
J. Chem. Phys.
78
,
5646
(
1983
);
J. L.
Martins
,
J.
Buttet
, and
R.
Car
,
Phys. Rev. B
31
,
1804
(
1985
);
M.
Manninen
,
Phys. Rev. B
34
,
6886
(
1986
).,
Phys. Rev. B
10.
W. Andreoni, 199th ACS National Meeting, Boston, Colloid and Surface Science Division, abstract 198.
11.
R. L.
Martin
and
E. R.
Davidson
,
Mol. Phys.
35
,
1713
(
1978
);
V.
Bonačić‐Koutecký
,
I.
Boustani
,
M.
Guest
, and
J.
Koutecký
,
J. Chem. Phys.
89
,
4861
(
1988
);
V.
Bonačić‐Koutecký
,
P.
Fantucci
, and
J.
Koutecký
,
J. Chem. Phys.
91
,
3794
(
1989
); ,
J. Chem. Phys.
I.
Boustani
,
W.
Pewestrof
,
P.
Fantucci
,
V.
Bonačić‐Koutecký
, and
J.
Koutecký
,
Phys. Rev. B
35
,
9437
(
1987
);
B. K.
Rao
and
P.
Jena
,
Phys. Rev. B
32
,
2058
(
1985
); ,
Phys. Rev. B
Y.
Wang
,
T. F.
George
,
D. M.
Lindsay
, and
A. C.
Beri
,
J. Chem. Phys.
86
,
3493
,
3500
(
1987
);
B. K.
Rao
and
P.
Jena
,
Phys. Rev. B
37
,
2867
(
1988
);
W.
Pewestrof
,
V.
Bonačić‐Koutecký
, and
J.
Koutecký
,
J. Chem. Phys.
89
,
5794
(
1988
);
F.
Cocchini
,
T. H.
Upton
, and
W.
Andreoni
,
J. Chem. Phys.
88
,
6068
(
1988
); ,
J. Chem. Phys.
M.
McAdon
and
W. A.
Goddard
,
Phys. Rev. Lett.
55
,
2563
(
1985
).
12.
F.
Spiegelmann
and
D.
Pavolini
,
J. Chem. Phys.
89
,
4954
(
1988
).
13.
V.
Bonačić‐Koutecký
,
P.
Fantucci
, and
J.
Koutecký
,
Phys. Rev. B
37
,
4369
(
1988
).
14.
M.
Broyer
,
G.
Delacrétaz
,
P.
Labastie
,
J.‐P.
Wolf
, and
L.
Wöste
,
J. Phys. Chem.
91
,
2626
(
1987
);
J. S.
Hayden
,
R.
Woodward
, and
J. L.
Gole
,
J. Phys. Chem.
90
,
1799
(
1986
); ,
J. Phys. Chem.
M.
Croyer
,
G.
Delzcrétaz
,
G.‐Q.
Ni
,
R. L.
Whetten
,
J.‐P.
Wolf
, and
L.
Wöste
,
J. Chem. Phys.
90
,
4620
(
1989
).
15.
R. W.
Hall
,
J. Chem. Phys.
89
,
4212
(
1988
);
R. W.
Hall
,
J. Phys. Chem.
93
,
5628
(
1989
);
R. W.
Hall
,
J. Chem. Phys.
91
,
1926
(
1989
).
16.
R. W.
Hall
,
Chem. Phys. Lett.
160
,
520
(
1989
).
17.
H.
Preuss
,
H.
Stoll
,
U.
Wedig
, and
Th.
Kruger
,
Int. J. Quantum Chem.
19
,
113
(
1981
).
18.
R. W. Hall (unpublished).
19.
E. L.
Pollock
and
D. M.
Ceperley
,
Phys. Rev. B
30
,
2555
(
1984
).
20.
D. F.
Coker
,
B. J.
Berne
, and
D.
Thirumalai
,
J. Chem. Phys.
86
,
5689
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.