Cyanogen iodide (ICN) is photodissociated at 249 nm. The CN X2Σ+ photofragment is probed by sub‐Doppler laser‐induced fluorescence (LIF), allowing the extraction of recoil velocity anisotropies and branching ratios to the two iodine atom spin–orbit states I(2P1/2) and I(2P3/2) as a function of the CN (v=0) rotational state. The quantum yield for I(2P1/2) production ΦI* is found to be 43%±3%, in excellent agreement with the recent diode laser spectroscopic measurement of Hess and Leone. The population of the F1 and F2 spin–rotation doublet components shows nonstatistical behavior over a wide range of N for both I atom spin–orbit state exit channels. The results suggest that trajectories leading to I(2P1/2) evolve on an essentially collinear surface; the CN fragments being found in low rotational levels with almost limiting values of the system anisotropy parameter (β=1.85 to 1.9). This value of β yields an estimate for the dissociative lifetime [CN X2Σ+v=0, N=0; I(2P1/2)] of 90±15 fs at this photolysis wavelength. There is evidence that trajectories leading to I(2P1/2)+CN(v=0) in intermediate N levels have sampled a bent surface, indicating that multiple curve crossings occur in this channel. The nature of trajectories correlated to I(2P3/2) is very complicated, with clear evidence for a mixed parallel and perpendicular initial transition and subsequent curve crossings. The CN (v=0) fragments formed in conjunction with this channel are found predominantly in medium to high rotational quantum states. The system anisotropy parameters vary as a function of N, being negative at low N and becoming positive at high N. An analysis of the correlation between fragment velocity and rotation yields results inconsistent with a pure parallel or perpendicular excitation. We present a model involving three interacting surfaces, by which we can reconcile all major experimental observations at this photolysis wavelength.

1.
S. R.
Leone
,
Acc. Chem. Res.
16
,
88
(
1983
).
2.
R.
Bersohn
,
J. Phys. Chem.
88
,
5145
(
1984
).
3.
J. P.
Simons
,
J. Phys. Chem.
91
,
5378
(
1987
).
4.
P. L.
Houston
,
J. Phys. Chem.
91
,
5388
(
1987
).
5.
G. E.
Hall
and
P. L.
Houston
,
Annu. Rev. Phys. Chem.
40
,
375
(
1989
).
6.
Faraday Discuss. Chem. Soc.
82
, (
1986
);
special issue.
7.
Y. B.
Band
and
K. F.
Freed
,
J. Chem. Phys.
63
,
3382
(
1975
).
8.
M. D.
Morse
,
K. F.
Freed
, and
Y. B.
Band
,
J. Chem. Phys.
70
,
3604
(
1979
).
9.
M. D.
Morse
,
K. F.
Freed
, and
Y. B.
Band
,
J. Chem. Phys.
70
,
3620
(
1979
).
10.
M. D.
Morse
and
K. F.
Freed
,
J. Chem. Phys.
74
,
4395
(
1981
).
11.
J. A.
Beswick
and
W. M.
Gelbart
,
J. Phys. Chem.
84
,
3148
(
1980
).
12.
M. D.
Pattengill
,
Chem. Phys.
78
,
229
(
1983
).
13.
M. D.
Pattengill
,
Chem. Phys.
87
,
419
(
1984
).
14.
R.
Schinke
and
V.
Engel
,
J. Chem. Phys.
83
,
5068
(
1985
).
15.
E. M.
Goldfield
,
P. L.
Houston
, and
G. S.
Ezra
,
J. Chem. Phys.
84
,
3120
(
1986
);
Note added in proof; see also
H.
Guo
and
G. C.
Schatz
,
J. Chem. Phys.
92
,
1634
(
1990
).
16.
C. H.
Dugan
and
D.
Anthony
,
J. Phys. Chem.
91
,
3929
(
1987
).
17.
J.
Vigué
,
B.
Girard
,
G.
Gouédard
, and
N.
Billy
,
Phys. Rev. Lett.
62
,
1358
(
1989
).
18.
R.
Heather
and
H.
Metiu
,
Chem. Phys. Lett.
157
,
505
(
1989
).
19.
N. E.
Henriksen
and
E. J.
Heller
,
J. Chem. Phys.
91
,
4700
(
1989
).
20.
G. W.
King
and
A. W.
Richardson
,
J. Mol. Spectrosc.
21
,
339
(
1966
).
21.
J. H.
Ling
and
K. R.
Wilson
,
J. Chem. Phys.
63
,
101
(
1975
).
22.
A. P.
Baronavski
and
J. R.
McDonald
,
Chem. Phys. Lett.
45
,
172
(
1977
).
23.
W. M.
Pitts
and
A. P.
Baronavski
,
Chem. Phys. Lett.
71
,
395
(
1980
).
24.
W.
Krieger
,
J.
Häger
, and
J.
Pfab
,
Chem. Phys. Lett.
85
,
69
(
1982
).
25.
A. P.
Baronavski
,
Chem. Phys.
66
,
217
(
1982
).
26.
W. H.
Fisher
,
T.
Carrington
,
S. V.
Filseth
,
C. M.
Sadowski
, and
C. H.
Dugan
,
Chem. Phys.
82
,
443
(
1983
).
27.
I.
Nadler
,
H.
Reisler
, and
C.
Wittig
,
Chem. Phys. Lett.
103
,
451
(
1984
).
28.
W. H.
Fisher
,
R.
Eng
,
T.
Carrington
,
C. H.
Dugan
,
S. V.
Filseth
, and
C. M.
Sadowski
,
Chem. Phys.
89
,
457
(
1984
).
29.
W. J.
Marinelli
,
N.
Sivakumar
, and
P. L.
Houston
,
J. Phys. Chem.
88
,
6685
(
1984
).
30.
F.
Shokoohi
,
S.
Hay
, and
C.
Wittig
,
Chem. Phys. Lett.
110
,
1
(
1984
).
31.
I.
Nadler
,
D.
Mahgerefteh
,
H.
Reisler
, and
C.
Wittig
,
J. Chem. Phys.
82
,
3885
(
1985
).
32.
G. E.
Hall
,
N.
Sivakumar
, and
P. L.
Houston
,
J. Chem. Phys.
84
,
2120
(
1986
).
33.
J. L.
Knee
,
L. R.
Khundkar
, and
A. H.
Zewail
,
J. Phys. Chem.
89
,
4659
(
1985
).
34.
N. F.
Scherer
,
J. L.
Knee
,
D. D.
Smith
, and
A. H.
Zewail
,
J. Phys. Chem.
89
,
5141
(
1985
).
35.
H.
Joswig
,
M. A.
O’Halloran
,
R. N.
Zare
, and
M. S.
Child
,
Faraday Discuss. Chem. Soc.
82
,
79
(
1986
).
36.
W. P.
Hess
and
S. R.
Leone
,
J. Chem. Phys.
86
,
3773
(
1987
).
37.
M. A.
O’Halloran
,
H.
Joswig
, and
R. N.
Zare
,
J. Chem. Phys.
87
,
303
(
1987
).
38.
M.
Dantus
,
M. J.
Rosker
, and
A. H.
Zewail
,
J. Chem. Phys.
87
,
2395
(
1987
).
39.
E.
Hasselbrink
,
J. R.
Waldeck
, and
R. N.
Zare
,
Chem. Phys.
126
,
191
(
1988
).
40.
M.
Dantus
,
M. J.
Rosker
, and
A. H.
Zewail
,
J. Chem. Phys.
89
,
6128
(
1988
).
41.
A.
Paul
,
W. H.
Fink
, and
W. M.
Jackson
,
Chem. Phys. Lett.
153
,
121
(
1988
).
42.
M. J.
Rosker
,
M.
Dantus
, and
A. H.
Zewail
,
J. Chem. Phys.
89
,
6113
(
1988
).
43.
A. H.
Zewail
,
J. Chem. Soc. Faraday Trans. 2
85
,
1221
(
1989
).
44.
J. F.
Black
,
J. R.
Waldeck
,
E.
Hasselbrink
, and
R. N.
Zare
,
J. Chem. Phys. Soc. Faraday Trans. 2
85
,
1044
(
1989
).
45.
J. H.
Ling
and
K. R.
Wilson
,
J. Chem. Phys.
65
,
881
(
1976
).
46.
G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950).
47.
J.
Weinard
,
Ann. Astrophys.
18
,
334
(
1955
).
48.
B. Brocklehurst, G. R. Herbert, S. H. Innanen, R. M. Seel, and R. W. Nichols, Identification Atlas of Molecular Spectra 9. The CN B2Σ+ −X2Σ+ Violet System (York University Centre for Research in Experimental Space Science, Toronto, 1972).
49.
R.
Engleman
, Jr.
,
Mol. Spectrosc.
49
,
106
(
1974
).
50.
D.
Cerny
,
R.
Bacis
,
G.
Guelachvili
, and
F.
Roux
,
J. Mol. Spectrosc.
73
,
154
(
1978
).
51.
H.
Ito
,
Y.
Ozaki
,
K.
Suzuki
,
T.
Kondow
, and
K.
Kuchitsu
,
J. Mol. Spectrosc.
127
,
283
(
1988
).
52.
R. N.
Dixon
,
J. Chem. Phys.
85
,
1866
(
1986
).
53.
M.
Dubs
,
U.
Brühlmann
, and
J. R.
Huber
,
J. Chem. Phys.
84
,
3106
(
1986
).
54.
G. E.
Hall
,
N.
Sivakumar
,
P. L.
Houston
, and
I.
Burak
,
Phys. Rev. Lett.
56
,
1671
(
1986
).
55.
G. E.
Hall
,
N.
Sivakumar
,
D.
Chawla
,
P. L.
Houston
, and
I.
Burak
,
J. Chem. Phys.
88
,
3682
(
1988
).
56.
M. P.
Docker
,
Chem. Phys.
135
,
405
(
1989
).
57.
J. R. Waldeck, J. F. Black, and R. N. Zare (unpublished work);
J. R. Waldeck, Ph.D. thesis, Stanford University, Stanford, Calif. 1989.
58.
Figures 3–17 were generated using the PLT2 plotting package, written jointly by individuals at the Department of Chemistry, Harvard University, Cambridge, Mass., and the Cardiac Unit, Massachusetts General Hospital, Boston, Mass.
59.
R. N. Zare, Ph.D. thesis, Harvard University, Cambridge, Mass., 1964.
60.
R. N.
Zare
and
D. R.
Herschbach
,
Proc. IEEE
51
,
173
(
1963
).
61.
J.
Solomon
,
J. Chem. Phys.
47
,
889
(
1967
).
62.
G. E.
Busch
and
K. R.
Wilson
,
J. Chem. Phys.
56
,
3638
(
1972
).
63.
C.
Jonah
,
J. Chem. Phys.
55
,
1915
(
1971
).
64.
T.
Nagata
,
T.
Kondow
,
K.
Kuchitsu
,
G. W.
Loge
, and
R. N.
Zare
,
Mol. Phys.
50
,
49
(
1983
);
T. Nagata, T. Kondow, and R. N. Zare (in preparation).
65.
R.
Schmiedl
,
H.
Dugan
,
W.
Meier
, and
K. H.
Welge
,
Z. Phys. A
304
,
137
(
1982
).
66.
R.
Bersohn
and
S.
Lin
,
Adv. Chem. Phys.
16
,
67
(
1969
).
67.
S.
Yang
and
R.
Bersohn
,
J. Chem. Phys.
61
,
4400
(
1974
).
68.
S. E.
Choi
and
R. B.
Bernstein
,
J. Chem. Phys.
85
,
150
(
1986
).
69.
R. N. Zare, Angular Momentum (Wiley, New York, 1988).
70.
R. N.
Zare
,
Mol. Photochem.
4
,
1
(
1972
).
71.
G. E.
Busch
and
K. R.
Wilson
,
J. Chem. Phys.
56
,
3626
(
1972
).
72.
G. N. A.
van Veen
,
T.
Baller
,
A. E.
de Vries
, and
N. J. A.
van Veen
,
Chem. Phys.
87
,
405
(
1984
).
73.
M. D.
Barry
and
P. A.
Gorry
,
Mol. Phys.
52
,
461
(
1984
) and references therein.
74.
R. E.
Continetti
,
B. A.
Balko
, and
Y. T.
Lee
,
J. Chem. Phys.
89
,
3383
(
1988
).
75.
R. O.
Loo
,
H.‐P.
Haerri
,
G. E.
Hall
, and
P. L.
Houston
,
J. Chem. Phys.
90
,
4222
(
1989
).
76.
D. W.
Chandler
,
J. W.
Thoman
,
M. H. M.
Janssen
, and
D. H.
Parker
,
Chem. Phys. Lett.
156
,
151
(
1989
).
77.
M.
Mons
and
I.
Dimicoli
,
J. Chem. Phys.
90
,
4037
(
1989
).
78.
I.
Powis
and
J. F.
Black
,
J. Phys. Chem.
93
,
2461
(
1989
).
79.
Numerical Algorithms Group, NAG, Inc., Downers Grove, Ill.
80.
P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic, London, 1981).
81.
P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw‐Hill, New York, 1969).
82.
J. F. Black and R. N. Zare (in preparation).
83.
R. I.
Altkorn
,
R. N.
Zare
, and
C. H.
Greene
,
Mol. Phys.
55
,
1
(
1985
).
84.
J. A.
Guest
,
M. A.
O’Halloran
, and
R. N.
Zare
,
Chem. Phys. Lett.
103
,
261
(
1984
).
85.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw‐Hill, New York, 1953).
86.
G.
Cazzoli
,
C.
Degli‐Esposti
, and
P. G.
Favero
,
J. Mol. Struct.
48
,
1
(
1978
).
87.
S.
Carter
,
I. M.
Mills
, and
R. N.
Dixon
,
J. Mol. Spectrosc.
106
,
411
(
1984
).
88.
M. S.
Child
,
Mol. Phys.
16
,
313
(
1971
).
89.
C. J.
Williams
,
K. F.
Freed
,
S. J.
Singer
, and
Y. B.
Band
,
Faraday Discuss. Chem. Soc.
82
,
51
(
1986
) and references therein.
90.
S. J.
Singer
,
K. F.
Freed
, and
Y. B.
Band
,
Adv. Chem. Phys.
61
,
1
(
1985
).
91.
K. F. Freed and Y. B. Band (private communication).
92.
J. F. Black, E. Hasselbrink, J. R. Waldeck, and R. N. Zare (in preparation).
93.
J. F.
Black
,
J. R.
Waldeck
, and
R. N.
Zare
,
J. Chem. Soc. Faraday Trans. 2
85
,
1312
(
1989
).
94.
J. W.
Rabalais
,
J. M.
McDonald
,
V.
Scherr
, and
S. P.
McGlynn
,
Chem. Rev.
71
,
73
(
1971
).
95.
J. F.
Black
and
I.
Powis
,
Chem. Phys.
125
,
375
(
1988
), and references therein.
96.
M.
Shapiro
,
J. Phys. Chem.
90
,
3644
(
1986
).
97.
K. Q.
Lao
,
M. D.
Person
,
P.
Xayariboun
, and
L. J.
Butler
,
J. Chem. Phys.
92
,
823
(
1990
).
98.
S.
Yabushita
and
K.
Morokuma
,
Chem. Phys. Lett.
153
,
517
(
1988
).
99.
M.
Tadjeddine
,
J. P.
Flament
and
C.
Teichteil
,
Chem. Phys.
118
,
45
(
1987
).
100.
R. N.
Dixon
,
Mol. Phys.
68
,
263
(
1989
).
101.
M. P.
Docker
,
A.
Hodgson
, and
J. P.
Simons
,
Faraday Discuss. Chem. Soc.
82
,
25
(
1986
).
102.
S.
Klee
,
K.‐H.
Gericke
, and
F. J.
Comes
,
J. Chem. Phys.
85
,
40
(
1986
).
103.
K.‐H.
Gericke
,
S.
Klee
,
F. J.
Comes
, and
R. N.
Dixon
,
J. Chem. Phys.
85
,
4463
(
1986
).
104.
A. E.
Bruno
,
U.
Brühlmann
, and
J. R.
Huber
,
Chem. Phys.
120
,
155
(
1988
).
105.
A.
Ticktin
,
A. E.
Bruno
,
U.
Brühlmann
, and
J. R.
Huber
,
Chem. Phys.
125
,
403
(
1988
).
106.
Y. Y.
Bai
,
A.
Ogai
,
C. X. W.
Qian
,
L.
Iwata
,
G. A.
Segal
, and
H.
Reisler
,
J. Chem. Phys.
90
,
3903
(
1989
).
107.
C. H.
Greene
and
R. N.
Zare
,
J. Chem. Phys.
78
,
6741
(
1983
).
108.
N.
Sivakumar
,
G. E.
Hall
,
P. L.
Houston
,
J. W.
Hepburn
, and
I.
Burak
,
J. Chem. Phys.
88
,
3692
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.