Limiting molar conductances of the K+ and Cl ions in heavy and light water have been determined at 45 °C as a function of pressure up to 2000 kgf cm2 (1 kgf cm−2 =0.9807×105 Pa) from the measured conductances and transference numbers of KCl. The residual friction coefficients (Δζobs ) of the K+ and Cl ions obtained by using their limiting molar conductances and the bulk viscosity of solvent are compared up to 1000 kgf cm−2 with the corresponding values (ΔζHO ) predicted by the Hubbard–Onsager dielectric friction theory. As predicted, Δζobs for the cation in H2 O is smaller than that in D2 O and slightly decreases with increasing pressure, while its value in D2 O is almost invariant in the pressure range studied. The failure of the continuum theory in D2 O indicates that the effect of the open structure of water on the cation migration cannot be neglected even at 45 °C because of stronger hydrogen bonds in D2 O than in H2 O. For the anion, on the other hand, the continuum theory shows more serious limitations: (i) Δζobs (Cl) in H2 O is not smaller than that in D2 O even at 45 °C with a large difference at high pressures and (ii) Δζobs (Cl) becomes negative in both types of water at high pressures. The difference in Δζ(Cl) between theory and experiment at 45 °C, however, becomes much smaller than that at lower temperatures.

1.
M.
Ueno
,
A.
Yoneda
,
N.
Tsuchihashi
, and
K.
Shimizu
,
J. Chem. Phys.
86
,
4678
(
1987
).
2.
J.
Hubbard
and
L.
Onsager
,
J. Chem. Phys.
67
,
4850
(
1977
).
3.
J.
Hubbard
,
J. Chem. Phys.
68
,
1649
(
1978
).
4.
A. Harlow, Ph.D. thesis, London University, 1969.
5.
J.
Jonas
,
T.
DeFries
, and
D. J.
Wilbur
,
J. Chem. Phys.
65
,
582
(
1976
).
6.
G.
Némethy
and
H. A.
Scheraga
,
J. Chem. Phys.
41
,
680
(
1964
).
7.
B. E. Conway, Ionic Hydration in Chemistry and Biophysics (Elsevier, Amsterdam, 1981), Chap. 26.
8.
R. A.
Kuharski
and
P. J.
Rossky
,
J. Chem. Phys.
82
,
5164
(
1985
).
9.
D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford, London, 1969), Chap. 4.
10.
G. A.
Gaballa
and
G. W.
Neilson
,
Mol. Phys.
50
,
97
(
1983
).
11.
F. H.
Stillinger
and
A.
Rahman
,
J. Chem. Phys.
61
,
4973
(
1974
).
12.
R. W.
Impey
,
M. L.
Klein
, and
I. R.
McDonald
,
J. Chem. Phys.
74
,
647
(
1981
).
13.
G.
Pálinkás
,
P.
Bopp
,
G.
Jancsó
, and
K.
Heinzinger
,
Z. Naturforsch. Teil A
39
,
179
(
1984
);
G.
Jancsó
,
P.
Bopp
, and
K.
Heinzinger
,
Chem. Phys.
85
,
377
(
1984
).
14.
M.
Nakahara
,
M.
Zenke
,
M.
Ueno
, and
K.
Shimizu
,
J. Chem. Phys.
83
,
280
(
1985
).
15.
The density data up to 1000 kgfcm−2 are taken from Ref. 16 for D2O and Ref. 17 for H2O; the data up to 2000 kgfcm−2 are obtained by the use of the formulas given in Refs. 16 and 17.
16.
C. T. A.
Chen
and
F. J.
Millero
,
J. Chem. Phys.
75
,
3553
(
1981
).
17.
C. T.
Chen
,
R. A.
Fine
, and
F. J.
Millero
,
J. Chem. Phys.
66
,
2142
(
1977
).
18.
The values of the viscosity at 1 atm are taken from Ref. 19 for D2O and Ref. 20 for H2O; they are multiplied by the relative viscosities at high pressures at 45 °C, which are obtained by fitting the relative viscosities at various temperatures at each pressure reported in Ref. 4 for D2O and Ref. 21 for H2O to a fifth‐order polynomial in temperature.
19.
F. J.
Millero
,
R.
Dexter
, and
E.
Hoff
,
J. Chem. Eng. Data
16
,
85
(
1971
).
20.
L.
Korson
,
W.
Drost‐Hansen
, and
F. J.
Millero
,
J. Phys. Chem.
73
,
34
(
1969
).
21.
J. B. Cappi, Ph.D. thesis, London University, 1964;
K. E.
Bett
and
J. B.
Cappi
,
Nature
207
,
620
(
1965
).
22.
The values of the static dielectric constant are obtained by assuming that the logarithmic form of the quantity reported in Ref. 23 up to 3 kbar in the temperature range of 10‐40 °C is expressed by a linear function of temperature at high pressures as well as at 1 atm as shown in Ref. 24.
23.
K. R.
Srinivasan
and
R. L.
Kay
,
J. Chem. Phys.
60
,
3645
(
1974
).
24.
R. L.
Kay
,
G. A.
Vidulich
, and
K. S.
Pribadi
,
J. Phys. Chem.
73
,
445
(
1969
).
25.
The values of the high‐frequency dielectric constant at 1 atm are taken from Ref. 26 for D2O and Ref. 27 for H2O; they are assumed to be independent of pressure.
26.
E. H.
Grant
and
R.
Shack
,
Trans. Faraday Soc.
65
,
1519
(
1969
).
27.
J. B. Hasted, in Water, edited by F. Franks (Plenum, New York, 1972), Vol. 1, Chap. 7.
28.
The value of the dielectric relaxation time of H2O at 1 atm is obtained from Ref. 27 by interpolation; this is multiplied by the relative dielectric relaxation times of H2O below 1000 kgfcm−2, which are calculated by using the high pressure data at 5 and 20 °C in Ref. 29 and by assuming that τd is proportional to η/T at each pressure, where T is the absolute temperature. The dielectric relaxation time of D2O at pressure P has been estimated using the following equation: τd(D2O)(P) = τd(H2O)(P)×η(D2O)(P)/η(H2O)(P). The validity of these assumptions is verified with respect to the temperature dependence in Ref. 27.
29.
R.
Pottel
and
E.
Asselborn
,
Ber. Bunsenges. Phys. Chem.
83
,
29
(
1979
).
30.
M.
Ueno
,
Shogo
I
, and
K.
Shimizu
,
Bull. Chem. Soc. Jpn.
56
,
846
(
1983
).
31.
M.
Ueno
,
N.
Tsuchihashi
, and
K.
Shimizu
,
Bull. Chem. Soc. Jpn.
58
,
2929
(
1985
).
32.
J. R.
Gwyther
,
M.
Spiro
,
R. L.
Kay
, and
G.
Marx
,
J. Chem. Soc. Faraday Trans. 1
72
,
1419
(
1976
);
J. R.
Gwyther
and
M.
Spiro
,
J. Chem. Soc. Faraday Trans. 1
72
,
1410
(
1976
).,
J. Chem. Soc., Faraday Trans. 1
33.
L. G.
Longsworth
,
J. Am. Chem. Soc.
54
,
2741
(
1932
);
D. A.
MacInnes
and
L. G.
Longsworth
,
Chem. Rev.
11
,
171
(
1932
).
34.
R. L.
Kay
and
J. L.
Dye
,
Proc. Natl. Acad. Sci. USA
49
,
5
(
1963
).
35.
C. G.
Swain
and
D. F.
Evans
,
J. Am. Chem. Soc.
88
,
383
(
1966
).
36.
R. W.
Allgood
,
D. J.
LeRoy
, and
A. R.
Gordon
,
J. Chem. Phys.
8
,
418
(
1940
).
37.
R. M. Fuoss and F. Accascina, Electrolytic Conductance (Wiley‐Interscience, New York, 1959).
38.
P. C.
Carn
,
J. Phys. Chem.
74
,
2718
(
1970
).
39.
A. B.
Gancy
and
S. B.
Brummer
,
J. Chem. Eng. Data
16
,
385
(
1971
).
40.
M.
Nakahara
and
K.
Ibuki
,
J. Phys. Chem.
90
,
3026
(
1986
).
41.
L. Pauling, The Nature of the Chemical Bond (Cornell University, New York, 1960), p. 514.
42.
K.
Ibuki
and
M.
Nakahara
,
J. Chem. Phys.
84
,
2776
(
1986
).
43.
K.
Ibuki
and
M.
Nakahara
,
J. Chem. Phys.
84
,
6979
(
1986
).
44.
From Refs. 42 and 43, a1 = −2.786 64,a2 = 8.621 63,a3 = −3.342 52, and a4 = 0.395 501.
45.
N.
Takisawa
,
J.
Osugi
, and
M.
Nakahara
,
J. Chem. Phys.
78
,
2591
(
1983
).
46.
G. E.
Walrafen
,
J. Soln. Chem.
2
,
159
(
1973
);
G. E.
Walrafen
and
M.
Abebe
,
J. Chem. Phys.
68
,
4694
(
1978
).
47.
M.
Nakahara
and
J.
Osugi
,
Rev. Phys. Chem. Jpn.
50
,
66
(
1980
).
48.
G.
Jancsó
,
K.
Heinzinger
, and
P.
Bopp
,
Z. Naturforsch. Teil A
40
,
1235
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.