The dissociative recombination rate coefficients for H+3, HN+2, and HCO+ are determined at 110, 210, and 273 K by monitoring the decay of the infrared absorption signals as a function of time. The rate coefficients are 1.8, 7.0, and 3.1 in units of 107 cm3 s1 for H+3, HN+2, and HCO+, respectively, at 273 K. These values agree very well with those obtained using the stationary afterglow or the merged beam techniques, but the values for H+3 disagree with that obtained by Smith and co‐workers (≤2×108 cm3 s1) using the flowing afterglow/Langmuir probe method. The rate coefficients for H+3 and HCO+ disagree with theory which has predicted very slow dissociative recombinations in the lower vibrational states. The temperature dependences obtained here, although the temperature range is rather limited, are consistent with those obtained previously using the stationary afterglow (for H+3 and HCO+) and the merged beam (for HN+2) techniques. The measurements are extended to several vibration–rotation levels and no significant rotation dependence of the rate coefficients is observed. It has also been found that the ions investigated here can be equally abundant at ice temperature as at liquid nitrogen temperature.

1.
N. G.
Adams
,
D.
Smith
, and
E.
Alge
,
J. Chem. Phys.
81
,
1778
(
1984
).
2.
D.
Smith
and
N. G.
Adams
,
Astrophys. J. Lett.
284
,
L13
(
1984
).
3.
N. G. Adams and D. Smith, in Astrochemistry. IAU Symposium No. 120, edited by M. S. Vardya and S. P. Tarafdar (Reidel, Dordrecht, 1987).
4.
M. T.
Leu
,
M. A.
Biondi
, and
R.
Johnsen
,
Phys. Rev. A
8
,
413
(
1973
).
5.
J. A.
Macdonald
,
M. A.
Biondi
, and
R.
Johnsen
,
Planet. Space Sci.
32
,
651
(
1984
).
6.
B.
Peart
and
K. T.
Dolder
,
J. Phys. B
7
,
1948
(
1974
).
7.
D.
Auerbach
,
R.
Cacak
,
R.
Caudano
,
T. D.
Gaily
,
C. J.
Keyser
,
J.
Wm. McGowan
,
J. B. A.
Mitchell
, and
S. F. J.
Wilk
,
J. Phys. B
10
,
3797
(
1977
).
8.
J.
Wm. McGowan
,
P. M.
Mul
,
V. S.
D’Angelo
,
J. B. A.
Mitchell
,
P.
Defrance
, and
H. R.
Froelich
,
Phys. Rev. Lett.
42
,
373
(
1979
).
9.
D.
Mathur
,
S. U.
Khan
, and
J. B.
Hasted
,
J. Phys. B
11
,
3615
(
1978
).
10.
H. H.
Michels
and
R. H.
Hobbs
,
Astrophys. J. Lett.
286
,
L27
(
1984
).
11.
H.
Hus
,
F.
Youssif
,
A.
Sen
, and
J. B. A.
Mitchell
,
Phys. Rev. A
38
,
658
(
1988
).
12.
J. B. A.
Mitchell
,
C. T.
Ng
,
L.
Forand
,
R.
Janssen
, and
J.
Wm. McGowan
,
J. Phys. B
17
,
L909
(
1984
).
13.
R.
Johnsen
,
Int. J. Mass Spectrom. Ion. Proc.
81
,
67
(
1987
).
14.
T.
Amano
,
Astrophys. J. Lett.
329
,
L121
(
1988
).
15.
M. T.
Leu
,
M. A.
Biondi
, and
R.
Johnsen
,
Phys. Rev. A
8
,
420
(
1973
).
16.
B.
Ganguli
,
M. A.
Biondi
,
R.
Johnsen
, and
J. L.
Dulaney
,
Phys. Rev. A
37
,
2543
(
1988
).
17.
P. M.
Mul
and
J.
Wm. McGowan
,
Astrophys. J. Lett.
227
,
L157
(
1979
).
18.
T.
Amano
,
J. Opt. Soc. Am. B
2
,
790
(
1985
).
19.
T.
Amano
and
K.
Tanaka
,
J. Chem. Phys.
83
,
3721
(
1985
).
20.
We adopt the notation used by Miller and Tennyson. The quantum numbers in the upper state express J, G, and U. The definition of G and U is as given by Watson. The quantum numbers in the lower state are as usual J and K.
21.
T.
Oka
,
Phys. Rev. Lett.
45
,
531
(
1980
).
22.
J. K. G.
Watson
,
S. C.
Foster
,
A. R. W.
McKellar
,
P. F.
Bernath
,
T.
Amano
,
F. S.
Pan
,
M. W.
Crofton
,
R. S.
Altman
, and
T.
Oka
,
Can. J. Phys.
62
,
1875
(
1984
).
23.
S.
Miller
and
J.
Tennyson
,
Astrophys. J.
335
,
486
(
1988
).
24.
P.
Botschwina
,
Chem. Phys. Lett.
107
,
535
(
1984
).
25.
P. Botschwina, in Ion and Cluster Ion Spectroscopy and Structure, edited by J. P. Maier (Elsevier, Amsterdam, 1989), pp. 59–108.
26.
C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw‐Hill, New York, 1955).
27.
See, e.g.,
F.
Pan
and
T.
Oka
,
Phys. Rev. A
36
,
2297
(
1987
).
28.
J. K.
Kim
,
L. P.
Theard
, and
W. T.
Huntress
,
Int. J. Mass Spectrom. Ion Phys.
15
,
223
(
1974
).
29.
A. von Engel, Electric Plasmas: Their Nature and Uses (Taylor and Francis, New York, 1983).
30.
M.
Saporoschenko
,
Phys. Rev. A
139
,
349
(
1965
).
31.
D. L.
Albritton
,
T. M.
Miller
,
D. W.
Martin
, and
E. W.
McDaniel
,
Phys. Rev.
171
,
94
(
1968
).
32.
See, e.g.,
J. K.
Kim
,
L. P.
Theard
, and
W. T.
Huntress
,
Chem. Phys. Lett.
32
,
610
(
1975
).
33.
J. C.
Owrutsky
,
C. S.
Gudeman
,
C. C.
Martner
,
L. M.
Tack
,
N. H.
Rosenbaum
, and
R. J.
Saykally
,
J. Chem. Phys.
84
,
605
(
1986
).
34.
T.
Amano
,
J. Chem. Phys.
79
,
3595
(
1983
).
35.
J.
Stevefelt
,
J.
Boulmer
, and
J.‐F.
Delpech
,
Phys. Rev. A
12
,
1246
(
1975
).
36.
W. P. Kraemer and A. U. Hazi, in Molecular Astrophysics: State of the Art and Future Directions, edited by G. H. F. Diercksen, W. F. Huebner, and P. W. Langhoff (Reidel, Dordrecht, 1985).
37.
F. B.
Yousif
and
J. B. A.
Mitchell
,
Phys. Rev. A
40
,
4318
(
1989
).
38.
T. G.
Anderson
,
C. S.
Gudeman
,
T. A.
Dixon
, and
R. C.
Woods
,
J. Chem. Phys.
72
,
1332
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.