The observation that the intramolecular direct‐correlation‐function matrix is very closely approximated by its large‐r form for rigid diatomics suggests an approximation such that the site–site Ornstein–Zernike equation becomes analytically solvable for several molecular models of interest. Alternatively, approximation of the particle–particle direct correlation function by its asymptotic form directly yields the same approximation, in particle–particle (in contrast to site–site) language. Applications of this approximation, which can be regarded as an extended mean spherical approximation when viewed in particle–particle terms, are made to rigid hard diatomics, dipolar diatomics, and a tetrahedral molecular model. The close but subtle connections between our approximation procedure and earlier approximations are discussed.

1.
See
E.
Lippert
,
C. A.
Chatzidimitriou‐Dreismann
, and
K.‐H.
Naumann
,
Adv. Chem. Phys.
57
,
311
(
1984
) for a recent review on molecular fluids.
2.
See, for example,
D.
Chandler
and
H. C.
Andersen
,
J. Chem. Phys.
57
,
1930
(
1972
).See D. Chandler, in The Liquid State of Matter: Fluids, Simple and Complex, edited by E. W. Montroll and J. L. Lebowitz (North‐Holland, Amsterdam, 1982) for subsequent work by Chandler and his coworkers.
3.
See, for example,
F.
Hirata
and
P. J.
Rossky
,
Chem. Phys. Lett.
84
,
329
(
1981
);
F.
Hirata
,
B. M.
Pettitt
, and
P. J.
Rossky
,
J. Chem. Phys.
77
,
509
(
1982
);
F.
Hirata
,
P. J.
Rossky
, and
B. M.
Pettitt
,
J. Chem. Phys.
78
,
4133
(
1983
).,
J. Chem. Phys.
4.
(a)
G. P.
Morriss
and
J. W.
Perram
,
Mol. Phys.
43
,
669
(
1981
) and references therein
G. P.
Morriss
and
J. W.
Perram
, (b) Also see
59
,
911
(
1986
). The water model in the paper 4(a) is a variant of an earlier model introduced by ,
Mol. Phys.
N.
Bjerrum
[
K. Dan. Vidensk. Selsk. Skr.
27
,
1
(
1951
)].
5.
(a)
G. P.
Morriss
and
E. R.
Smith
,
J. Stat. Phys.
24
,
607
(
1981
);
(b)
G. P.
Morriss
and
P. T.
Cummings
,
Mol. Phys.
49
,
1103
(
1983
).
6.
P. T.
Cummings
,
G. P.
Morriss
, and
G.
Stell
,
Mol. Phys.
51
,
289
(
1984
).
7.
This approximation proposed by Chandler and Andersen in Ref. 2 was called the interaction‐site model (ISM) approximation by them.
8.
(a) See, e.g.,
J. S.
Ho/oye
and
G.
Stell
,
J. Chem. Phys.
65
,
18
(
1976
);
(b)
P. T.
Cummings
and
G.
Stell
,
Mol. Phys.
46
,
383
(
1982
).
9.
S. H.
Lee
,
J. C.
Rasaiah
, and
P. T.
Cummings
,
J. Chem. Phys.
83
,
317
(
1985
).
10.
J. C.
Rasaiah
and
S. H.
Lee
,
J. Chem. Phys.
83
,
5870
(
1985
).
11.
S. H.
Lee
and
J. C.
Rasaiah
,
J. Chem. Phys.
86
,
983
(
1987
).
12.
P. T.
Cummings
and
G.
Stell
,
Mol. Phys.
51
,
253
(
1984
).
13.
J. C.
Rasaiah
and
S. H.
Lee
,
J. Chem. Phys.
83
,
6396
(
1985
).
14.
(a)
P. T.
Cummings
, and
G.
Stell
,
Mol. Phys.
55
,
33
(
1985
);
P. T.
Cummings
, and
G.
Stell
, (b)
60
,
1315
(
1987
).,
Mol. Phys.
15.
S. H.
Lee
,
P. T.
Cummings
, and
G.
Stell
,
Mol. Phys.
62
,
65
(
1987
).
16.
R. J.
Baxter
,
Aust. J. Phys.
21
,
563
(
1968
).
17.
A. K.
Soper
and
R. N.
Silver
,
Phys. Rev. Lett.
49
,
471
(
1982
).
18.
G. Stell, SUNY CEAS Report No. 460 (1985);
Invited contribution to the Colston Symposium on Water and Aqueous Solution, University of Bristol, April 1985.
This content is only available via PDF.
You do not currently have access to this content.