We describe how the true statistical error on an average of correlated data can be obtained with ease and efficiency by a renormalization group method. The method is illustrated with numerical and analytical examples, having finite as well as infinite range correlations.

1.
K. Wilson, in Recent Developments in Gauge Theories, Cargèse, 1979, edited by G. ’t Hooft et al. (Plenum, New York, 1980).
2.
C.
Whitmer
,
Phys. Rev. D
29
,
306
(
1984
).
3.
S.
Gottlieb
,
P. B.
Mackenzie
,
H. B.
Thacker
, and
D.
Weingarten
,
Nucl. Phys. B
263
,
704
(
1986
).
4.
K. Binder, in Phase Transitions and Critical Phenomena edited by C. Domb and M. S. Green (Academic, New York, 1976), Vol. 5.
5.
K. Binder, in Monte Carlo Methods in Statistical Physics, edited by K. Binder (Topics in Current Physics, Vol. 7) (Springer, New York, 1979).
6.
K. Binder and D. Stauffer, in Applications of the Monte Carlo Method in Statistical Physics, edited by K. Binder (Topics in Current Physics, Vol. 36) (Springer, New York, 1984).
7.
G. J.
Daniell
,
A. J. G.
Hey
, and
J. E.
Mandula
,
Phys. Rev. D
30
,
2230
(
1984
).
8.
E. L.
Pollock
and
B. J.
Alder
,
Physica A
102
,
1
(
1980
).
9.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Proc. R. Soc. London Ser. A
373
,
27
(
1980
).
10.
B.
Efron
,
SIAM Review
21
,
460
(
1979
).
11.
H. G. Petersen, S. W. de Leeuw, and J. W. Perram, Mol. Phys. (in press).
This content is only available via PDF.
You do not currently have access to this content.