We study the diffusion (and conductivity) associated with the random walk of noninteracting particles on a disordered lattice characterized by bond disorder, temporal rearrangement, and spatial correlations. This paper extends previous works on dynamic bond percolation processes to situations where spatial correlations in the rearrangement process are important. Many bond effective‐medium theory is used to obtain the effective diffusion coefficient Deff(ω) in such systems. The resulting Deff(ω) depends on the frequency through combinations of the form ω−ij where τj are characteristic relaxation times associated with the rearrangement process. We analyze in detail a model combining single bond renewal with a two bond exchange process. The resulting DC (ω=0) diffusion coefficient shows a new percolation threshold for the bond exchange model (in the absence of single bond renewal which eliminates the threshold altogether), and a crossover between the different limiting behaviors is seen as the different kinds of renewal process are switched on and off. Implications for ionic transport in polymeric ionic conductors are discussed.

1.
M.
Lagues
,
J. Phys. Lett. (Paris)
40
,
L331
(
1979
).
2.
R.
Kutner
and
R. W.
Kehr
,
Philos. Mag. A
48
,
199
(
1983
).
3.
S. D.
Druger
,
A.
Nitzan
, and
M. A.
Ratner
,
J. Chem. Phys.
79
,
3133
(
1983
). The model used in Refs. 3‐6 is referred to as the DRN model in the paper.
4.
S. D.
Druger
,
M. A.
Ratner
, and
A.
Nitzan
,
Solid State Ionics
9/10
,
1115
(
1983
).
5.
S. D.
Druger
,
M. A.
Ratner
, and
A.
Nitzan
,
Phys. Rev. B
31
,
3939
(
1985
).
6.
S. D. Druger, in Transport and Relaxation Processes in Random Materials, edited by J. Klafter, R. J. Rubin, and M. F. Shlesinger (World Science, Singapore, 1986).
7.
A.
Nitzan
,
S. D.
Druger
, and
M. A.
Ratner
,
Philos. Mag. B
56
,
853
(
1987
).
8.
R.
Granek
,
A.
Nitzan
,
S. D.
Druger
, and
M. A.
Ratner
,
Solid State Ionics
28–30
,
120
(
1988
).
9.
A. K.
Harrison
and
R.
Zwanzig
,
Phys. Rev. A
32
,
1072
(
1985
), denoted by HZ in the paper.
10.
G. S.
Grest
,
I.
Webman
,
S. A.
Safran
, and
A. L. R.
Bug
,
Phys. Rev. A
33
,
2842
(
1986
).
11.
A. R.
Kerstein
and
B. F.
Edwards
,
Phys. Rev. B
33
,
3353
(
1986
).
12.
A. L. R.
Bug
and
Y.
Gefen
,
Phys. Rev. A
35
,
1301
(
1987
).
13.
R.
Hilfer
and
R.
Orbach
,
Chem. Phys.
128
,
275
(
1988
).
14.
I.
Webman
,
Phys. Rev. Lett.
47
,
1496
(
1981
).
15.
T.
Odagaki
and
M.
Lax
,
Phys. Rev. B
24
,
5284
(
1981
).
16.
S.
Summerfield
,
Solid State Commun.
39
,
401
(
1981
).
17.
M.
Sahimi
,
B. D.
Hughes
,
L. E.
Scriven
, and
H. T.
Davis
,
J. Chem. Phys.
78
,
6849
(
1983
).
18.
J. A.
Blackman
,
J. Phys. C
9
,
2049
(
1976
);
G.
Ahmed
and
J. A.
Blackman
,
J. Phys. C
12
,
837
(
1979
); ,
J. Phys. C
L.
Turban
,
J. Phys. C
11
,
449
(
1978
); ,
J. Phys. C
T.
Nagatani
,
J. Phys. C
14
,
3383
,
4839
(
1981
).,
J. Phys. C
19.
B. P.
Watson
and
P. L.
Leath
,
Phys. Rev. B
9
,
4893
(
1974
);
J.
Bernasconi
and
H. J.
Weismann
,
Phys. Rev. B
13
,
1131
(
1976
).,
Phys. Rev. B
20.
E. W. Montroll and B. J. West, in Fluctuation Phenomena, edited by E. W. Montroll and J. L. Lebowitz (North‐Holland, Amsterdam, 1979), Vol. VII.
21.
S.
Kirkpatrick
,
Rev. Mod. Phys.
45
,
574
(
1973
).
22.
To arrive at this form we have used the Reduce symbol manipulation program.
23.
J. C.
Kimball
and
L. W.
Adams
,
Phys. Rev. B
18
,
5851
(
1978
).
24.
This fact was already noted by R. Zwanzig (private communication).
25.
R. Granek and A. Nitzan (to be published).
This content is only available via PDF.
You do not currently have access to this content.