Properties of chemical reactions in systems undergoing diffusional motion depend on the ratio of chemical to diffusional rates. The present work deals with perturbation expansions in this quantity. For bounded diffusion, the Laplace transformed survival probability, mean lifetime, eigenvalues, and eigenfunctions are expanded in this ratio. The theory is developed mainly in the fast diffusion limit. In this limit, the survival probability for an initial equilibrium state is shown to be exponential up to linear order. For unbounded diffusion, expansions are derived for the steady‐state concentration profile and rate coefficient. By inverting the series one obtains Padé‐like approximations for rate coefficients with much improved convergence. Several examples are worked out in detail. These include the ‘‘radiation’’ boundary condition, barrierless isomerization, steady‐state binding, and Förster quenching.

1.
S. A. Rice, in Comprehensive Chemical Kinetics, edited by C. H. Bamford, C. F. H. Tipper, and R. G. Compton (Elsevier, Amsterdam, 1985), Vol. 25.
2.
M.
von Smoluchowski
,
Z. Phys. Chem.
92
,
129
(
1917
).
3.
F. C.
Collins
and
G. E.
Kimball
,
J. Colloid Sci.
4
,
425
(
1949
).
4.
K. M.
Hong
and
J.
Noolandi
,
J. Chem. Phys.
68
,
5163
(
1988
).
5.
E.
Pines
,
D.
Huppert
, and
N.
Agmon
,
J. Chem. Phys.
88
,
5620
(
1988
).
6.
U. M.
Gösele
,
M.
Hauser
,
U. K. A.
Klein
, and
R.
Frey
,
Chem. Phys. Lett.
34
,
519
(
1975
).
7.
G.
Wilemski
and
M.
Fixman
,
J. Chem. Phys.
58
,
4009
(
1973
);
G.
Wilemski
and
M.
Fixman
,
60
,
866
,
878
(
1974
).,
J. Chem. Phys.
8.
A.
Szabo
,
G.
Lamm
, and
G. H.
Weiss
,
J. Stat. Phys.
34
,
225
(
1984
).
9.
(a)
B.
Bagchi
,
G. R.
Fleming
, and
D. W.
Oxtoby
,
J. Chem. Phys.
78
,
7375
(
1983
);
(b)
B.
Bagchi
,
Chem. Phys. Lett.
138
,
315
(
1987
);
B.
Bagchi
,
J. Chem. Phys.
87
,
5393
(
1987
).
10.
H. A.
Kramers
,
Physica
7
,
284
(
1940
).
11.
(a)
G.
Rothenberger
,
D. K.
Negus
, and
R. M.
Hochstrasser
,
J. Chem. Phys.
79
,
5360
(
1983
);
G. R.
Fleming
,
S. H.
Courtney
, and
M. W.
Balk
,
J. Stat. Phys.
42
,
83
(
1986
);
P. F.
Barbara
and
G. C.
Walker
,
Rev. Chem. Intermediates
10
,
1
(
1988
);
(b)
A.
Nitzan
,
Adv. Chem. Phys.
70
,
489
(
1988
), and references therein.
12.
M.
Doi
,
Chem. Phys.
9
,
455
(
1975
);
M.
Doi
,
11
,
107
(
1975
); ,
Chem. Phys.
S.
Sunagawa
and
M.
Doi
,
Polym. J.
7
,
604
(
1975
);
S.
Sunagawa
and
M.
Doi
,
8
,
239
(
1976
).,
Polym. J. (Tokyo, Jpn.)
13.
(a)
N.
Agmon
and
J. J.
Hopfield
,
J. Chem. Phys.
78
,
6947
(
1983
);
(b)
N.
Agmon
and
J. J.
Hopfield
,
79
,
2042
(
1983
).,
J. Chem. Phys.
14.
H.
Sumi
and
R. A.
Marcus
,
J. Chem. Phys.
84
,
4894
(
1986
);
W.
Nadler
and
R. A.
Marcus
,
J. Chem. Phys.
86
,
3906
(
1987
).,
J. Chem. Phys.
15.
M.
Battezzati
and
A.
Perico
,
J. Chem. Phys.
74
,
4527
(
1981
);
M.
Battezzati
and
A.
Perico
,
75
,
886
(
1981
).,
J. Chem. Phys.
16.
G. H.
Weiss
,
J. Chem. Phys.
80
,
2880
(
1984
).
17.
C.
Van den Broeck
and
M.
Bouten
,
J. Stat. Phys.
45
,
1031
(
1986
).
18.
P.
Sibani
and
J. B.
Pedersen
,
Phys. Rev. A
29
,
1403
(
1984
), Eq. (4.9).
19.
R.
Granek
,
A.
Nitzan
, and
E.
Weitz
,
J. Chem. Phys.
89
,
5589
(
1988
), Eq. (2.16).
20.
(a)
G. H.
Weiss
,
Adv. Chem. Phys.
13
,
1
(
1967
);
G. H.
Weiss
,
J. Stat. Phys.
24
,
581
(
1981
);
(b)
A.
Szabo
,
K.
Schulten
, and
Z.
Schulten
,
J. Chem. Phys.
72
,
4350
(
1980
);
(c)
K.
Schulten
,
Z.
Schulten
, and
A.
Szabo
,
J. Chem. Phys.
74
,
4426
(
1981
).,
J. Chem. Phys.
21.
D.
Shoup
and
A.
Szabo
,
Biophys. J.
40
,
33
(
1982
).
22.
N.
Agmon
,
J. Chem. Phys.
80
,
5049
(
1984
).
23.
A. Szabo (private discussions).
24.
See, however, Eq. (51) in
A.
Apelblat
,
Phys. Sci. Data
13
, (
1983
).
25.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, NBS Appl. Math. Publ. No. 55 (U.S. GPO, Washington DC, 1964).
This content is only available via PDF.
You do not currently have access to this content.