A method is presented for determining the stationary phase points for multidimensional path integrals employed in the calculation of finite‐temperature quantum time correlation functions. The method can be used to locate stationary paths at any physical time; in the case that t≫βℏ, the stationary points are the classical paths linking two points in configuration space. Both steepest descent and simulated annealing procedures are utilized to search for extrema in the action functional. Only the first derivatives of the action functional are required. Examples are presented first of the harmonic oscillator for which the analytical solution is known, and then for anharmonic systems, where multiple stationary phase points exist. Suggestions for Monte Carlo sampling strategies utilizing the stationary points are made. The existence of many and closely spaced stationary paths as well as caustics presents no special problems. The method is applicable to a range of problems involving functional integration, where optimal paths linking two end points are desired.

1.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
For a recent review, see J. P. Valleau and S. G. Whittington, in Modern Theoretical Chemistry, edited by B. J. Berne (Plenum, New York, 1977), Vol. 5, pp. 137–168.
2.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw‐Hill, New York, 1965).
3.
See, for example, Path Integrals and Their Applications in Quantum, Statistical, and Solid State Physics (Plenum, New York, 1978).
4.
For a cross section of recent activity in this area, see
J. Stat. Phys.
43
,
729
(
1986
).
5.
J. D.
Doll
,
J. Chem. Phys.
81
,
3536
(
1984
).
6.
J. D. Doll and D. L. Freeman, Report No. LA‐UR (86‐4177);
Adv. Chem. Phys.
73
,
289
(
1988
).
7.
J. D.
Doll
,
R. D.
Coalson
, and
D. L.
Freeman
,
J. Chem. Phys.
87
,
1641
(
1987
).
8.
J. D.
Doll
,
D. L.
Freeman
, and
M. J.
Gillan
,
Chem. Phys. Lett.
143
,
277
(
1988
).
9.
J. D.
Doll
,
T. L.
Beck
, and
D. L.
Freeman
,
J. Chem. Phys.
89
,
5753
(
1988
).
10.
V. S.
Filinov
,
Nucl. Phys.
B271
,
717
(
1986
).
11.
J.
Chang
and
W. H.
Miller
,
J. Chem. Phys.
87
,
1648
(
1987
).
12.
N.
Makri
and
W. H.
Miller
,
Chem. Phys. Lett.
139
,
10
(
1987
).
13.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
89
,
2170
(
1988
).
14.
R. E.
Cline
, Jr.
and
P. G.
Wolynes
,
J. Chem. Phys.
88
,
4334
(
1988
).
15.
R. Serra, M. Andretta, M. Compiani, and G. Zanarini, Introduction to the Physics of Complex Systems (Pergamon, New York, 1986).
16.
See, for example,
L. R.
Pratt
,
J. Chem. Phys.
85
,
5045
(
1986
);
R.
Elber
and
M.
Karplus
,
Chem. Phys. Lett.
139
,
375
(
1987
);
R. S.
Berry
,
H. L.
Davis
, and
T. L.
Beck
,
Chem. Phys. Lett.
147
,
13
(
1988
).,
Chem. Phys. Lett.
17.
L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).
18.
P.
Pechukas
,
Phys. Rev.
181
,
166
(
1969
).
19.
E. J.
Heller
,
J. Chem. Phys.
62
,
1544
(
1975
);
E. J.
Heller
,
64
,
63
(
1976
).,
J. Chem. Phys.
20.
D.
Huber
and
E. J.
Heller
,
J. Chem. Phys.
87
,
5302
(
1987
).
21.
W. H.
Miller
and
T. F.
George
,
J. Chem. Phys.
56
,
5668
(
1972
).
22.
T. F.
George
and
W. H.
Miller
,
J. Chem. Phys.
57
,
2458
(
1972
).
23.
C. W.
McCurdy
and
W. H.
Miller
,
J. Chem. Phys.
73
,
3191
(
1980
).
24.
S.
Wandzura
,
Phys. Rev. Lett.
57
,
2603
(
1986
).
25.
J. R.
Klauder
,
Phys. Rev. Lett.
56
,
897
(
1986
).
26.
P.
Zhang
,
R. M.
Levy
, and
R. A.
Freisner
,
Chem. Phys. Lett.
144
,
236
(
1988
).
27.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge, New York, 1986);
E. H. L. Aarts and P. J. M. van Laarhoven, in Pattern Recognition Theory and Applications, edited by P. A. Devijver and J. Kittler (Plenum, New York, 1987);
M. Eigen, in Emerging Synthesis in Science, edited by D. Pines (Addison‐Wesley, New York, 1988);
S.
Kirkpatrick
,
C. D.
Gelatt
,Jr.
, and
H. P.
Vecchi
,
Science
220
,
671
(
1983
);
S. M.
Lederman
and
R. A.
Marcus
,
J. Chem. Phys.
88
,
6312
(
1988
).
28.
D. L.
Freeman
and
J. D.
Doll
,
J. Chem. Phys.
80
,
5709
(
1984
).
29.
D. W.
McLaughlin
,
J. Math. Phys.
13
,
1099
(
1972
).
30.
A. F.
Voter
and
J. D.
Doll
,
J. Chem. Phys.
80
,
5814
(
1984
);
A. F.
Voter
,
J. Chem. Phys.
82
,
1890
(
1985
).,
J. Chem. Phys.
31.
M.
Sprik
,
M. L.
Klein
, and
D.
Chandler
,
Phys. Rev. B
31
,
4234
(
1985
).
32.
D.
Kandel
,
E.
Domany
,
D.
Ron
,
A.
Brandt
, and
E.
Loh
, Jr.
,
Phys. Rev. Lett.
60
,
1591
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.