Nonlinear dynamics is applied to chaotic unassignable atomic and molecular spectra with the aim of extracting detailed information about regular dynamic motions that exist over short intervals of time. It is shown how this motion can be extracted from high resolution spectra by doing low resolution studies or by Fourier transforming limited regions of the spectrum. These motions mimic those of periodic orbits (PO) and are inserts into the dominant chaotic motion. Considering these inserts and the PO as a dynamically decoupled region of space, resonant scattering theory and stabilization methods enable us to compute ladders of resonant states which interact with the chaotic quasicontinuum computed in principle from basis sets placed off the PO. The interaction of the resonances with the quasicontinuum explains the low resolution spectra seen in such experiments. It also allows one to associate low resolution features with a particular PO. The motion on the PO thereby supplies the molecular movements whose quantization causes the low resolution spectra. Characteristic properties of the periodic orbit based resonances are discussed. The method is illustrated on the photoabsorption spectrum of the hydrogen atom in a strong magnetic field and on the photodissociation spectrum of H+3 . Other molecular systems which are currently under investigation using this formalism are also mentioned.

1.
(a)
A.
Holle
,
G.
Wiebush
,
J.
Main
,
B.
Hager
,
H.
Rottke
, and
K. H.
Welge
,
Phys. Rev. Lett.
56
,
2594
(
1986
);
(b)
J.
Main
,
G.
Wiebusch
,
A.
Holle
, and
K. H.
Welge
,
57
,
1789
(
1986
).,
Phys. Rev. Lett.
2.
A.
Carrington
and
R. A.
Kennedy
,
J. Chem. Phys.
81
,
91
(
1984
).
3.
(a)
E.
Abramson
,
R. W.
Field
,
D.
Imre
,
K. K.
Innes
, and
J. L.
Kinsey
,
J. Chem. Phys.
83
,
453
(
1985
);
(b)
J. P.
Pique
,
Y.
Chen
,
R. W.
Field
, and
J. L.
Kinsey
,
Phys. Rev. Lett.
58
,
4715
(
1987
).
4.
. Bohigas, M. J. Giannoni, and C. Schmit, in Quantum Chaos and Nuclear Statistical Physics, Lecture Notes in Physics, edited by T. H. Seligman and H. Nishioka (Springer, Berlin, 1986), Vol. 263, p. 18.
5.
M. V. Berry, in Chaotic Behavior of Deterministic Systems, edited by G. Iooss, R. G. Helleman, and R. Stora, (North Holland, Amsterdam, 1983), p. 171.
6.
(a)
D.
Delande
and
J. C.
Gay
,
J. Phys. B
19
,
L173
(
1986
);
D.
Delande
and
J. C.
Gay
,
Phys. Rev. Lett.
57
,
2006
(
1986
);
(b)
D.
Wintgen
and
H. Y.
Friedrich
,
J. Phys. B
29
,
L99
,
L173
(
1986
);
D.
Wintgen
and
H. Y.
Friedrich
,
Phys. Rev. Lett.
57
,
571
(
1986
);
(c)
G.
Wunner
,
U.
Woelk
,
I.
Zech
,
G.
Zeller
,
T.
Ertl
,
F.
Geyer
,
W.
Schweizer
, and
H.
Ruder
,
Phys. Rev. Lett.
Lett.
57
,
3261
(
1986
).,
Phys. Rev. Lett.
7.
S.
Mukamel
,
J.
Sue
, and
A.
Pandey
,
Chem. Phys. Lett.
105
,
134
(
1984
).
8.
Y. M.
Engel
,
R. D.
Levine
,
J. W.
Thoman
Jr.
,
J. I.
Steinfeld
and
R. I.
McKay
,
J. Chem. Phys.
86
,
6561
(
1987
).
9.
R. D.
Levine
,
Adv. Chem. Phys.
70
,
53
(
1987
).
10.
M. Broyer, G. Delacrétaz, G. Q. Ni, R. L. Whetten, J.‐P. Wolf, and L. Wöste (to be published).
11.
(a)
H. S.
Taylor
,
J.
Zakrzewski
, and
S.
Saini
,
Chem. Phys. Lett.
145
,
555
(
1988
);
(b)
H. S.
Taylor
and
J.
Zakrzewski
,
Phys. Rev. A
38
,
3732
(
1988
).
12.
W. R. S.
Garton
and
F. S.
Tomkins
,
Astrophys. J.
158
,
839
(
1969
).
13.
M.
Robnik
,
J. Phys. A
14
,
3195
(
1981
);
J. B.
Delos
,
S. K.
Knudson
, and
D. W.
Noid
,
Phys. Rev. A
30
,
1208
(
1984
).
14.
D.
Wintgen
,
Phys. Rev. Lett.
58
,
1589
(
1987
);
D.
Wintgen
and
H.
Friedrich
,
Phys. Rev. A
36
,
131
(
1987
).
15.
M. L.
Du
and
J. B.
Delos
,
Phys. Rev. Lett.
58
,
1731
(
1987
).
16.
M. C.
Gutzwiller
,
J. Math. Phys.
12
,
343
(
1971
).
17.
E. J.
Heller
;
Accts. of Chem. Res.
14
,
368
(
1981
), and references therein.
18.
W. P.
Reinhardt
,
J. Phys. B
16
,
635
(
1983
).
19.
The Gutzwiller and Delos theories are too complicated to explain here. Since our theory is so different and more conventional we need not try to do this. We do review the conclusions drawn from such theories as we will arrive at some similar ones from a different point of view.
20.
M.
Berblinger
,
E.
Pollak
, and
Ch.
Schlier
,
J. Chem. Phys.
88
,
15
(
1988
).
21.
R. K.
Preston
and
J.
Tully
,
J. Chem. Phys.
54
,
4297
(
1971
).
22.
S. C.
Farantos
,
J. Chem. Phys.
85
,
641
(
1986
);
S. C. Farantos and J. Tennyson, in Stochasticity and Intramolecular Redistribution of Energy, NATO ASI Series C (Reidel, Dordrecht, 1986).
23.
H.
Feshbach
,
Ann. Phys. N.Y.
19
,
287
(
1962
);
P. O.
Lowdin
,
J. Math. Phys.
3
,
969
(
1962
).
24.
A.
Hazi
and
H. S.
Taylor
,
Phys. Rev. A
1
,
1109
(
1970
).
25.
M.
Bixon
and
J.
Jortner
,
J. Chem. Phys.
48
,
716
(
1968
).
26.
J. H.
Frederick
and
E. J.
Heller
,
J. Chem. Phys.
87
,
6592
(
1987
), and references therein.
27.
Z.
Bačić
and
J.
Light
,
J. Chem. Phys.
85
,
4594
(
1986
).
28.
(a)
J.
Simons
,
J. Chem. Phys.
75
,
2465
(
1981
);
(b)
A. D.
Isacson
and
D. G.
Truhlar
,
Chem. Phys. Lett.
110
,
130
(
1984
);
(c)
C. W.
McCurdy
and
J. F.
McNutt
,
Chem. Phys. Lett.
94
,
306
(
1983
); ,
Chem. Phys. Lett.
(d)
A.
Macias
and
A.
Riera
,
Chem. Phys. Lett.
117
,
42
(
1985
).,
Chem. Phys. Lett.
29.
This section will be presented in a physical, as opposed to mathematical, manner. It will end with a computational prescription to compute observed quantities. As such, its “proof” comes in the demonstrated results in Sec. II C and II D. The formal mathematical theory is really nothing else than Feshbach‐Lowdin partitioning theory (Ref. 23) with the P projector defined as projecting onto the computed PO centered wave function associated with the stable root. Q is the orthogonal complement operator. Bound state adjacent to a continuum theories hold for quasicontinua up to times of the order of the density of states (in a.u.).
30.
R. S.
Mackay
,
J. D.
Meiss
, and
I. C.
Percival
,
Physica D
27
,
1
(
1987
).
31.
The resonance region is an area of phase space encircled by “partial separ‐atrixes” and centered about a given eliptic or “hyperbolic with reflection” PO. Reference 30 originally refers to such a region as a resonance, we prefer to call it a resonance region to distinguish it from quantum resonances which are the object of our study.
32.
R. B.
Shirts
and
W. P.
Reinhardt
,
J. Chem. Phys.
77
,
5204
(
1982
);
R. T.
Skodje
,
F.
Borondo
, and
W. P.
Reinhardt
,
J. Chem. Phys.
82
,
4611
(
1985
).,
J. Chem. Phys.
33.
By Franck‐Condon region we mean the region of configuration space spanned by the transition operator time the initial or intermediate state as the case may be.
34.
E. J.
Heller
,
Phys. Rev. Lett.
53
,
1515
(
1984
);
P.
O’Connor
,
J.
Gehlen
and
E. J.
Heller
,
Phys. Rev. Lett.
58
,
1296
(
1987
).,
Phys. Rev. Lett.
35.
J.
Gomez Llorente
and
E.
Pollak
,
J. Chem. Phys.
89
,
1129
(
1988
);
(submitted).
36.
J. Zakrzewski, J. M. Gomez Llorente, and H. S. Taylor, J. Phys. B. (in press).
37.
M. A.
Al‐Laithy
,
P. F.
O’Mahony
, and
K. T.
Taylor
,
J. Phys. B
19
,
L773
(
1986
).
38.
J.
Main
,
A.
Holle
,
G.
Wiebush
, and
K. H.
Welge
,
Z. Phys. D
6
,
295
(
1987
);
A.
Holle
,
J.
Main
,
G.
Wiebush
,
H.
Rottke
, and
K. H.
Welge
,
Phys. Rev. Lett.
61
,
161
(
1988
).
39.
D.
Wintgen
,
J. Phys. B
20
,
L511
(
1987
).
40.
M. A.
Al‐Laithy
and
C. M.
Farmer
,
J. Phys. B
20
,
L747
(
1987
).
41.
W. Schweizer, R. Niemeier, H. Friedrich, G. Wunner, and H. Ruder (preprint 1988).
42.
A. R. Edmonds and R. A. Pullen, preprints ICTP 179‐801 Nos. 28–30 Imperial College, London, UK.
43.
A. F.
Starace
,
J. Phys. B
6
,
585
(
1973
).
44.
D. Delande, F. Biraben, and T. C. Gay, in Les Houches, Session XXXVIII, 1982 New trends in atomic physics, edited by G. Grynberg and R. Stora (Amsterdam: Elsevier, 1984), p. 351.
45.
E.
Pollak
,
J. Chem. Phys.
86
,
1645
(
1987
).
46.
R.
Pfeiffer
and
M. S.
Child
,
Mol. Phys.
60
,
1367
(
1987
).
47.
J. M.
Gomez Llorente
and
E.
Pollak
,
Chem. Phys.
120
,
37
(
1988
).
48.
J. M.
Gomez Llorente
and
E.
Pollak
,
Chem. Phys. Lett.
138
,
125
(
1987
).
49.
J.
Gomez Llorente
,
J.
Zakrzewski
,
H. S.
Taylor
and
K.
Kulander
,
J. Chem. Phys.
89
,
5959
(
1988
).
50.
E.
Pollak
,
Chem. Phys.
61
,
305
(
1981
).
51.
E. Pollak (private communication).
52.
W.
Meyer
,
P.
Botschwina
, and
Peter
Burton
,
J. Chem. Phys.
84
,
891
(
1986
).
53.
J. M. Gomez Llorente and H. S. Taylor, J. Chem. Phys. (submitted).
This content is only available via PDF.
You do not currently have access to this content.