A rotationally resolved fluorescence excitation spectrum of the 000 band in the A1A′←X1A′ (S1S0) transition of 1‐fluoronaphthalene, at ∼3138 Å, has been observed using a newly constructed laser spectrometer operating in the ultraviolet. The band in question is a hybrid band exhibiting 75% a‐type and 25% b‐type character, and consists of ∼4000 lines at a rotational temperature of 9 K, each with a FWHM=3 MHz, all of which have been assigned. The band origin is at 31 866.508±0.002 cm1 (vac), and the rotational constants are A″=1920.6, B″=1122.2, C″=708.5, A′=1891.5, B′=1102.1, and C′=696.6±0.1 MHz. The S1S0 optical transition moment is rotated away from the a inertial axis by an angle of ±30°, an effect that could have dynamic consequences. Some operating characteristics of the spectrometer are described.

1.
D. S.
McClure
,
J. Chem. Phys.
17
,
905
(
1949
).
2.
D. S.
McClure
,
J. Chem. Phys.
22
,
1668
(
1954
);
D. S.
McClure
,
24
,
1
(
1956
).,
J. Chem. Phys.
3.
C. A.
Hutchison
, Jr.
and
B. W.
Mangum
,
J. Chem. Phys.
32
,
1261
(
1960
).
4.
See, for example,
T.
Pavlopoulous
and
M. A.
el Sayed
,
J. Chem. Phys.
41
,
1082
(
1964
).
5.
E. W.
Schlag
and
H.
von Weyssenhoff
,
J. Chem. Phys.
51
,
2508
(
1969
).
6.
J. E. Wessel, Ph.D. thesis, University of Chicago, 1971.
7.
See, for example,
C. A.
Langhoff
and
G. W.
Robinson
,
Chem. Phys.
6
,
34
(
1974
).
8.
J. C.
Hsieh
,
C. S.
Huang
, and
E. C.
Lim
,
J. Chem. Phys.
60
,
4345
(
1974
).
9.
M.
Stockburger
,
H.
Gattermann
, and
W.
Klusmann
,
J. Chem. Phys.
63
,
4519
(
1975
).
10.
S. M.
Beck
,
D. E.
Powers
,
J. B.
Hopkins
, and
R. E.
Smalley
,
J. Chem. Phys.
73
,
2019
(
1980
).
11.
W. A.
Majewski
and
W. L.
Meerts
,
J. Mol. Spectrosc.
104
,
271
(
1984
).
12.
See, for example,
J.
Kommandeur
,
W. A.
Majewski
,
W. L.
Meerts
, and
D. W.
Pratt
,
Annu. Rev. Phys. Chem.
38
,
433
(
1987
).
13.
W. A.
Majewski
,
Opt. Commun.
45
,
201
(
1983
).
14.
J. K. G.
Watson
,
J. Chem. Phys.
46
,
1935
(
1967
).
15.
G. W.
King
,
R. M.
Hainer
, and
P. C.
Cross
,
J. Chem. Phys.
11
,
27
(
1943
).
16.
W. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd ed. (Wiley‐Interscience, New York, 1984).
17.
F. W.
Birss
and
D. A.
Ramsay
,
Comp. Phys. Commun.
38
,
83
(
1984
).
18.
J. M. Hollas, High Resolution Spectroscopy (Butterworths, London, 1982).
19.
B. A.
Jacobson
,
J. A.
Guest
,
F. A.
Novak
, and
S. A.
Rice
,
J. Chem. Phys.
87
,
269
(
1987
).
20.
J. M.
Hollas
and
S. N.
Thakur
,
Mol. Phys.
27
,
1001
(
1974
).
21.
J. M.
Hollas
and
S. N.
Thakur
,
Mol. Phys.
25
,
1315
(
1973
).
22.
M. J. S.
Dewar
and
H. C.
Longuet‐Higgins
,
Proc. Phys. Soc. London Ser. A
67
,
795
(
1954
).
An excellent summary of this problem is given in L. Salem, The Molecular Orbital Theory of Conjugated Systems (Benjamin, Reading, MA, 1966). See also Ref. 19.
23.
M. V. Rama Krishna, Ph.D. thesis, University of Pittsburgh, 1986.
24.
R. A.
Singh
and
S. N.
Thakur
,
J. Cryst. Mol. Struct.
11
,
197
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.