The coordinate matrix element of the time evolution operator, exp[−iĤt/ℏ], is determined by expanding (its exponent) in a power series in t. Recursion relations are obtained for the expansion coefficients which can be analytically evaluated for any number of degrees of freedom. Numerical application to the tunneling matrix element in a double well potential and to the reactive flux correlation function for a barrier potential show this approach to be a dramatic improvement over the standard short time approximation for the propagator. Its use in a Feynman path integral means that fewer ‘‘time slices’’ in the matrix product exp[(−i/ℏ)ΔtĤ]N, Δt=t/N, will be required. The first few terms in the present expansion constitute a fully quantum version of the short time propagator recently obtained by us using semiclassical methods [Chem. Phys. Lett. 151, 1 (1988)].

1.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw‐Hill, New York, 1965).
2.
L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).
3.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
);
J. P. Valleau and S. G. Whittington, in Modern Theoretical Chemistry, edited by B. J. Berne (Plenum, New York, 1977), Vol. 5, pp. 137–168.
4.
(a)
M. F.
Trotter
,
Proc. Am. Math. Soc.
10
,
545
(
1959
);
(b)
E.
Nelson
,
J. Math. Phys.
5
,
332
(
1964
).
5.
N.
Makri
and
W. H.
Miller
,
Chem. Phys. Lett.
151
,
1
(
1988
).
6.
H.
Kono
,
A.
Takasaka
, and
S. H.
Lin
,
J. Chem. Phys.
88
,
6390
(
1988
).
7.
M.
Takahashi
and
M.
Imada
,
J. Phys. Soc. Jpn.
53
,
3765
(
1984
).
8.
(a)
M.
Suzuki
,
Prog. Theor. Phys.
56
,
1454
(
1976
);
(b)
H.
De Raedt
and
B.
De Raedt
,
Phys. Rev. A
28
,
3575
(
1983
).
9.
(a)
J. D.
Doll
,
R. D.
Coalson
, and
D. L.
Freeman
,
Phys. Rev. Lett.
55
,
1
(
1985
);
(b)
R. D.
Coalson
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
85
,
4567
(
1986
).
10.
K. S.
Schweizer
,
R. M.
Stratt
,
D.
Chandler
, and
P. G.
Wolynes
,
J. Chem. Phys.
75
,
1347
(
1981
).
11.
W. H.
Miller
,
Adv. Chem. Phys.
25
,
69
(
1974
).
12.
D.
Huber
and
E. J.
Heller
,
J. Chem. Phys.
87
,
5302
(
1987
);
D.
Huber
and
E. J.
Heller
,
89
,
4752
(
1988
); ,
J. Chem. Phys.
D.
Huber
,
E. J.
Heller
, and
R. G.
Littlejohn
,
J. Chem. Phys.
89
,
2003
(
1988
).,
J. Chem. Phys.
13.
G. A. Baker, Jr., Essentials of Padé Approximants (Academic, New York, 1975).
14.
E. P.
Wigner
,
Phys. Rev.
40
,
749
(
1932
).
15.
R. A.
Harris
and
L. R.
Pratt
,
J. Chem. Phys.
82
,
5084
(
1985
).
16.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.