In the past, basis sets for use in correlated molecular calculations have largely been taken from single configuration calculations. Recently, Almlöf, Taylor, and co‐workers have found that basis sets of natural orbitals derived from correlated atomic calculations (ANOs) provide an excellent description of molecular correlation effects. We report here a careful study of correlation effects in the oxygen atom, establishing that compact sets of primitive Gaussian functions effectively and efficiently describe correlation effects if the exponents of the functions are optimized in atomic correlated calculations, although the primitive (sp) functions for describing correlation effects can be taken from atomic Hartree–Fock calculations if the appropriate primitive set is used. Test calculations on oxygen‐containing molecules indicate that these primitive basis sets describe molecular correlation effects as well as the ANO sets of Almlöf and Taylor. Guided by the calculations on oxygen, basis sets for use in correlated atomic and molecular calculations were developed for all of the first row atoms from boron through neon and for hydrogen. As in the oxygen atom calculations, it was found that the incremental energy lowerings due to the addition of correlating functions fall into distinct groups. This leads to the concept of correlationconsistentbasissets, i.e., sets which include all functions in a given group as well as all functions in any higher groups. Correlation consistent sets are given for all of the atoms considered. The most accurate sets determined in this way, [5s4p3d2f1g], consistently yield 99% of the correlation energy obtained with the corresponding ANO sets, even though the latter contains 50% more primitive functions and twice as many primitive polarization functions. It is estimated that this set yields 94%–97% of the total (HF+1+2) correlation energy for the atoms neon through boron.

1.
T. H. Dunning, Jr., and L. B. Harding, in Theory of Chemical Reaction Dynamics, edited by M. Baer (Chemical Rubber, Boca Raton, FL, 1985), Vol. I, Chap. 1.
2.
B.
Liu
,
J. Chem. Phys.
80
,
581
(
1984
).
See also,
B.
Liu
,
J. Chem. Phys.
58
,
1925
(
1973
)
and
P.
Siegbahn
and
B.
Liu
,
P.
Siegbahn
and
B.
Liu
,
68
,
1794
(
1978
).,
J. Chem. Phys.
3.
P. E.
Cade
and
W. M.
Huo
,
J. Chem. Phys.
47
,
614
(
1967
);
A. D.
McLean
and
M.
Yoshimine
,
A. D.
McLean
and
M.
Yoshimine
,
47
,
3256
(
1967
).,
J. Chem. Phys.
4.
J. W. C.
Johns
and
R. F.
Barrow
,
Proc. R. Soc. London Ser. A
251
,
504
(
1959
);
G.
DiLonardo
and
A. E.
Douglas
,
Can. J. Phys.
51
,
434
(
1973
).
5.
C. C. J.
Roothaan
and
P. S.
Kelley
,
Phys. Rev.
131
,
1177
(
1963
).
6.
C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. No. 467 (U.S. GPO, Washington, D.C., 1949), Vol. 1.
7.
F.
Sasaki
and
M.
Yoshimine
,
Phys. Rev. A
9
,
26
(
1974
).
8.
F. A.
Elder
,
D.
Villarejo
, and
M. G.
Inghram
,
J. Chem. Phys.
43
,
758
(
1965
).
9.
Pople and co‐workers have proposed a scheme for computing quantities such as reaction energies which attempts to balance the errors in the correlation energy; see, for example,
J. A.
Pople
,
M. J.
Frisch
,
B. T.
Luke
, and
J. S.
Binkley
,
Int. J. Quantum Chem. Quantum Chem. Symp.
17
,
307
(
1983
).
10.
H. J.
Silverstone
and
O.
Sinanoglu
,
J. Chem. Phys.
44
,
1899
(
1966
).
11.
See, for example,
W. A.
Goddard
III
,
Phys. Rev.
157
,
81
(
1967
);
B. J.
Moss
,
F. W.
Bobrowicz
, and
W. A.
Goddard
III
,
J. Chem. Phys.
63
,
4632
(
1975
);
T. H.
Dunning
,Jr.
,
D. C.
Cartwright
,
W. J.
Hunt
,
P. J.
Hay
, and
F. W.
Bobrowicz
,
J. Chem. Phys.
64
,
4755
(
1976
); ,
J. Chem. Phys.
K. Ruedenberg and K. R. Sundberg, in Quantum Science, edited by J.‐L. Calais, O. Goscinski, J. Linderberg, and Y. Ohrn (Plenum, New York, 1976);
L. M.
Cheung
,
K. R.
Sundberg
, and
K.
Ruedenberg
,
Int. J. Quantum Chem.
16
,
1103
(
1979
);
K.
Ruedenberg
,
M. W.
Schmidt
,
M. M.
Gilbert
, and
S. T.
Elbert
,
Chem. Phys.
71
,
41
(
1982
);
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
); ,
Chem. Phys.
B. O.
Roos
,
Int. J. Quantum Chem. S
14
,
175
(
1980
).
A recent review of multiconfiguration techniques is given in R. Shepard, in Ab Initio Methods in Quantum Chemistry‐II, Adv. Chem. Phys., edited by K. P. Lawley (Wiley, New York, 1987).
12.
Calculated from the molecular energy given in
P. E.
Cade
,
K. D.
Sales
, and
A. C.
Wahl
,
J. Chem. Phys.
44
,
1973
(
1966
), and the atomic energy given in Ref. 5.
13.
B. Rosen, Spectroscopic Data Relative to Diatomic Molecules (Pergamon, New York, 1970), p. 268.
14.
G. C.
Lie
and
E.
Clementi
,
J. Chem. Phys.
60
,
1288
(
1974
);
see also,
T. H.
Dunning
, Jr.
,
D. C.
Cartwright
,
W. J.
Hunt
,
P. J.
Hay
, and
F. W.
Bobrowicz
,
J. Chem. Phys.
64
,
4755
(
1976
).
15.
K.
Ruedenberg
,
M. W.
Schmidt
,
M. M.
Gilbert
, and
S. T.
Elbert
,
Chem. Phys.
71
,
65
(
1982
).
16.
(a) T. H. Dunning, Jr. and P. J. Hay, in Modern Theoretical Chemistry, edited by H. F. Schaefer III (Plenum, New York, 1977), Vol. 2, Chap. 1;
(b)
E. R.
Davidson
and
D.
Feller
,
Chem. Rev.
86
,
681
(
1986
).
17.
(a)
H. F.
Schaefer
III
,
R. A.
Klemm
, and
F. E.
Harris
,
Phys. Rev.
181
,
137
(
1969
);
(b)
H. F.
Schaefer
III
,
R. A.
Klemm
, and
F. E.
Harris
,
J. Chem. Phys.
51
,
4643
(
1969
).
18.
P. J.
Hay
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
64
,
5077
(
1976
), and references therein.
19.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
65
,
3854
(
1976
).
20.
D.
Gervy
and
G.
Verhaegen
,
Int. J. Quantum Chem.
12
,
115
(
1977
);
L. G. M.
Pettersson
and
P. E. M.
Siegbahn
,
J. Chem. Phys.
83
,
3538
(
1985
).
21.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
22.
K.
Jankowski
,
R.
Becherer
,
P.
Scharf
,
H.
Schiffer
, and
R.
Ahlrichs
,
J. Chem. Phys.
82
,
1413
(
1985
);
R.
Ahlrichs
,
P.
Scharf
, and
K.
Jankowski
,
Chem. Phys. Lett.
98
,
381
(
1985
);
R.
Becherer
and
R.
Ahlrichs
,
Chem. Phys.
99
,
389
(
1985
).
23.
J.
Almlïf
and
P. R.
Taylor
,
J. Chem. Phys.
86
,
4070
(
1987
).
See also,
J.
Almlöf
,
T.
Helgaker
, and
P. R.
Taylor
,
J. Chem. Phys.
92
,
3029
(
1988
). ,
J. Chem. Phys.
24.
Although the (d,f,g,…) sets to be determined here describe dynamical correlation effects in addition to polarization effects, we shall refer to the collection of functions of higher angular momentum than the functions occupied in the HF atomic wave function as polarization functions.
25.
F. W. Bobrowicz and W. A. Goddard III, in Modern Theoretical Chemistry, edited by H. F. Schaefer III (Plenum, New York, 1977), Vol. 2, Chap. 4.
26.
T. H. Dunning, Jr. (unpublished). The initial set of exponents for the (12s), (6p), and (7p) sets were taken from Duijneveldt (Ref. 26);
the reoptimization had little effect on either the exponents or the energy.
27.
F. B. van Duijneveldt, IBM Res. Rep. RJ 945 (1971).
28.
R. C.
Raffenetti
,
J. Chem. Phys.
58
,
4452
(
1973
).
29.
In all calculations reported here the Cartesian Gaussian functions were transformed to pure (real) angular momentum functions. In addition, the s component was removed from the (l+m+n) = 2 Cartesian set, the p components from the (l+m+n) = 3 set and the s and d components from the (l+m+n) = 4 set.
30.
R. M. Pitzer (unpublished).
31.
1 mh(millihartree) = 0.001 h (hartree) = 0.027 21 eV = 0.6275 kcal/mol.
32.
This has only a minor effect; compare, e.g., the results for the (3d 2f lg) sets quoted in Tables I and IX.
33.
C. Froese Fischer, The Hartree‐Fock Method for Atoms. A Numerical Approach (Wiley, New York, 1977), Chap. 2.
34.
The (7s) set was contracted using the prescription established in the preceding two sections, namely, the three most diffuse Gaussian primitives were added to the 1s orbital of the hydrogen atom (see also below).
35.
B.
Liu
,
J. Chem. Phys.
80
,
581
(
1984
).
36.
W.
Kolos
and
L.
Wolniewicz
,
J. Chem. Phys.
43
,
2429
(
1965
).
37.
See, for example,
C. W.
Bauschlicher
,Jr.
and
P.
Taylor
,
J. Chem. Phys.
86
,
858
,
1420
(
1987
);
C. W.
Bauschlicher
,Jr.
and
S. R.
Langhoff
,
J. Chem. Phys.
86
,
5595
(
1987
); ,
J. Chem. Phys.
C. W.
Bauschlicher
,Jr.
and
P.
Taylor
,
J. Chem. Phys.
86
,
5600
(
1987
); ,
J. Chem. Phys.
C. W.
Bauschlicher
, Jr.
,
S. P.
Walch
,
S. R.
Langhoff
,
P. R.
Taylor
, and
R. L.
Jaffe
,
J. Chem. Phys.
88
,
1743
(
1988
).,
J. Chem. Phys.
This content is only available via PDF.
You do not currently have access to this content.