The far infrared spectrum (375 to 35 cm1) of gaseous fluoroacetyl chloride, CH2FC(O)C1, has been recorded at a resolution of 0.10 cm1. The fundamental asymmetric torsions of the more stable trans (halogen atoms are trans) and the high energy cis conformations have been observed at 116.18 and 49.42 cm1, respectively, each with several upper state transitions falling to lower frequency. From these spectral data, an asymmetric potential function has been calculated and the potential coefficients are: V1=43±6, V2=1039±36, V3=498±3, V4=149±21, and V6=−10±7 cm1. The trans to cis and cis to trans barriers are 1455±25 cm1 (4.16±0.07 kcal/mol) and 914±24 cm1 (2.61±0.07 kcal/mol), respectively, with an enthalpy difference of 541±45 cm1 (1.55±0.13 kcal/mol). From studies of the Raman spectra at variable temperatures, values of 509±37 cm1 (1.46±0.10 kcal/mol) and 310±8 cm1 (0.89±0.02 kcal/mol) have been determined for the enthalpy difference for the gas and liquid, respectively. The conformational stability, barriers to internal rotation, and fundamental vibrational frequencies which have been determined experimentally, are compared to those obtained from abinitio Hartree–Fock calculations employing both the 3‐21G* and 6‐31G* basis sets, and to the corresponding quantities obtained for some similar molecules.

1.
L. B.
Szalanski
and
R. G.
Ford
,
J. Mol. Spectrosc.
53
,
428
(
1974
).
2.
A. Y.
Khan
and
N.
Jonathan
,
J. Chem. Phys.
52
,
148
(
1970
).
3.
J. E. F. Jenkins and J. A. Ladd, J. Chem. Soc. (B) 1968, 1237.
4.
K.
Furic
and
J. R.
Dung
,
Appl. Spectrosc.
42
,
175
(
1988
).
5.
J. R.
Durig
,
W.
Zhao
,
D.
Lewis
, and
T. S.
Little
,
J. Chem. Phys.
89
,
1285
(
1988
), and references therein.
6.
J. R.
Durig
,
H. V.
Phan
,
J. A.
Hardin
,
R. J.
Berry
, and
T. S.
Little
,
J. Mol. Struct.
200
,
000
(
1988
).
7.
J. S. Binkley, M. J. Frisch, D. J. Defrees, K. Raghavachari, R. A. Whiteside, H. B. Schlegel, E. M. Fleuder, and J. A. Pople, GAUSSIAN 82, Carnegie Mellon University, Pittsburgh, PA, 1984.
8.
E.
Sagebarth
and
E. B.
Wilson
,
J. Chem. Phys.
46
,
3088
(
1967
).
9.
B. P.
Van Eijck
,
P.
Brandts
, and
J. P.
Maas
,
J. Mol. Struct.
44
,
1
(
1978
).
10.
P.
Pulay
,
Mol. Phys.
17
,
197
(
1969
).
11.
W. J. Hehre, L. Radon, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
12.
J. H. Schachtschneider, “Vibrational Analysis of Polyatomic Molecules,” V and VI, Technical Reports No. 231‐64 and 57–65, respectively, Shell Development Co., California.
13.
E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw‐Hill, New York, 1955).
14.
K.
Tanake
and
S.
Saëki
,
Bull. Chem. Soc. Jpn.
47
,
2754
(
1974
).
15.
K.
Tanake
and
S.
Saëki
,
Spectrochim. Acta
28
,
1083
(
1972
).
16.
I.
Nakagawa
,
I.
Ichishima
,
K.
Kuratani
,
T.
Miyazama
,
T.
Shimanouchi
, and
S.
Mizushima
,
J. Chem. Phys.
20
,
1720
(
1952
).
17.
O.
Steinnes
,
Q.
Shen
, and
K.
Hagen
,
J. Mol. Struct.
64
,
217
(
1980
).
18.
O.
Steinnes
,
Q.
Shen
, and
K.
Hagen
,
J. Mol. Struct.
66
,
181
(
1980
).
19.
B. P.
Van Eijck
and
E. W.
Kaleveld
,
J. Mol. Struct.
34
,
161
(
1976
).
20.
B. P.
Van Eijck
and
V. M.
Stolwijk
,
J. Mol. Spectrosc.
111
,
164
(
1985
).
21.
K. R. Loos, Ph.D. thesis, Massachusetts Institute of Technology, 1964.
22.
D. A. C. Compton, in Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier, Amsterdam, 1981), Vol. 9, p. 255.
23.
S. Mizushima, Structure of Molecules and Internal Rotation (Academic, New York, 1954).
24.
Masaaki.
Baba
,
Umpei.
Nagashima
, and
Ichiro.
Hanazaki
,
J. Chem. Phys.
83
,
3514
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.