Electron spin–echo (ESE) and two‐dimensional electron–electron double resonance (2D ELDOR) experiments have been performed as a function of director orientation and temperature in the smectic A phase of the liquid crystal S2 for the spin–probe PD‐tempone(2×103 M). Over the entire temperature range studied (288–323 K) we observe significant 2D ELDOR cross peaks only for ΔMI =±1 indicative of 14N spin–relaxation and negligible Heisenberg exchange. From the angular dependent 14N spin–relaxation rates we obtain the dipolar spectral densities at the hyperfine (hf) frequency, whereas from a combination of ESE and 2D ELDOR we obtain the dipolar and Zeeman‐dipolar spectral densities at zero frequency. The angular dependent spectral densities were successfully decomposed into their basic components in accordance with theory. The angular dependent spectral densities at the hf frequency are not predicted by a model of anisotropic rotational diffusion in a nematic orienting potential, but are consistent with predictions of a model due to Moro and Nordio of solute rototranslational diffusion in a McMillan‐type potential. The angular dependence also indicates that order director fluctuations in the smectic phase are suppressed at frequencies on the order of 10 MHz. An additional contribution to solute reorientation due to cooperative hydrocarbon chain fluctuations is suggested to account for the behavior of the observed spectral densities at zero frequency. An evaluation of the relevance of several other dynamical models to this experimental work is also presented.

1.
C. F.
Polnaszek
and
J. H.
Freed
,
J. Phys. Chem.
79
,
2283
(
1975
).
2.
W.‐J.
Lin
and
J. H.
Freed
,
J. Phys. Chem.
83
,
379
(
1979
).
3.
J. H.
Freed
,
J. Chem. Phys.
66
,
4183
(
1977
).
4.
J. S.
Hwang
,
R. P.
Mason
,
L. P.
Hwang
, and
J. H.
Freed
,
J. Phys. Chem.
79
,
489
(
1975
).
5.
S. A.
Zager
and
J. H.
Freed
,
Chem. Phys. Lett.
109
,
270
(
1984
).
6.
J. H. Freed, in Rotational Dynamics of Small and Macromolecules, Lecture Notes in Physics, edited by T. Dorfmüller and R. Pecora (Springer, Berlin, 1987), Vol. 293, p. 89.
7.
G.
Moro
and
P. L.
Nordio
,
J. Phys. Chem.
89
,
997
(
1985
).
8.
P.
Pincus
,
Solid State Commun.
7
,
415
(
1969
).
9.
P.
Ukleja
,
J.
Pirs
, and
J. W.
Doane
,
Phys. Rev.
14
,
414
(
1976
).
10.
J. W.
Doane
,
C. E.
Tarr
, and
M. A.
Nickerson
,
Phys. Rev. Lett.
33
,
620
(
1974
).
11.
C. G.
Wade
,
Annu. Rev. Phys. Chem.
28
,
47
(
1977
).
12.
T. H.
Mugele
,
V.
Graf
,
W.
Wölfel
, and
F.
Noack
,
Z. Naturforsch. Tei. A
35
,
924
(
1980
).
13.
R. R.
Vold
,
R. L.
Vold
, and
N. M.
Szeverenyi
,
J. Phys. Chem.
85
,
1934
(
1981
).
14.
G.
Nagele
,
W.
Wölfel
, and
F.
Noack
,
Isr. J. Chem.
23
,
380
(
1983
).
15.
L.
Plomp
,
M.
Schreurs
, and
J.
Bulthuis
,
J. Chem. Phys.
88
,
5202
(
1988
).
16.
F.
Noack
,
M.
Notter
, and
W.
Weiss
,
Liq. Cryst.
3
,
907
(
1988
).
17.
R. R.
Vold
and
R. L.
Vold
,
J. Chem. Phys.
88
,
4655
(
1988
).
18.
M.
Vilfan
,
M.
Kogoj
, and
R.
Blinc
,
J. Chem. Phys.
86
,
1055
(
1986
).
19.
R.
Blinc
,
M.
Luzar
,
M.
Vilfan
, and
M.
Burgar
,
J. Chem. Phys.
63
,
3445
(
1975
).
20.
R.
Blinc
,
M.
Luzar
,
M.
Mali
,
R.
Osredkar
,
J.
Seliger
, and
M.
Vilfan
,
J. Phys. (Paris) Colloq.
37
,
C3
73
(
1976
).
21.
J. A.
Marqusee
,
M.
Warner
, and
K. A.
Dill
,
J. Chem. Phys.
81
,
6404
(
1984
).
22.
K. V. S.
Rao
,
J. S.
Hwang
, and
J. H.
Freed
,
Phys. Rev. Lett.
37
,
515
(
1976
).
23.
A. Nayeem, Ph.D. thesis, Cornell University, 1986;
A. Nayeem, S. Rananavare, and J. H. Freed (to be published).
24.
S. B.
Rananavare
,
V. G. K. M.
Pisipati
, and
J. H.
Freed
,
Liq. Cryst.
3
,
957
(
1988
).
25.
J. H. Freed (to be published).
26.
E. van der Drift, Ph.D. thesis, Delft Technical University, Delft, The Netherlands, 1985.
27.
L. S.
Selwyn
,
R. R.
Vold
, and
R. L.
Vold
,
Mol. Phys.
55
,
287
(
1985
).
28.
E.
Meirovitch
,
D.
Igner
,
E.
Igner
,
G.
Moro
, and
J. H.
Freed
,
J. Chem. Phys.
77
,
3915
(
1982
).
29.
J. S.
Hwang
,
K. V. S.
Rao
, and
J. H.
Freed
,
J. Chem. Phys.
80
,
1490
(
1976
).
30.
R. R.
Vold
,
P. H.
Kobrin
, and
R. L.
Vold
,
J. Chem. Phys.
69
,
3430
(
1978
);
R.
Poupko
,
R. L.
Vold
, and
R. R.
Vold
,
J. Phys. Chem.
84
,
3444
(
1980
);
R. L.
Vold
and
R. R.
Vold
,
Isr. J. Chem.
23
,
315
(
1983
).
31.
H. C.
Jarrell
,
I. C. P.
Smith
,
P. A.
Jovall
,
H. H.
Mantsch
, and
D. J.
Siminovitch
,
J. Chem. Phys.
88
,
1260
(
1988
).
32.
J. S.
Hyde
,
J. C. W.
Chien
, and
J. H.
Freed
,
J. Chem. Phys.
48
,
4211
(
1968
).
33.
C. A.
Popp
and
J. S.
Hyde
,
Proc. Natl. Acad. Sci.
79
,
2559
(
1982
).
34.
J. H. Freed, in Multiple Electron Resonance Spectroscopy, edited by M. Dorio and J. H. Freed (Plenum, New York, 1979), Chap. 3.
35.
E.
Meirovitch
and
J. H.
Freed
,
J. Phys. Chem.
84
,
2459
(
1980
).
36.
E.
van der Drift
and
J.
Smidt
,
J. Phys. Chem.
88
,
2275
(
1984
).
37.
R. N.
Schwartz
,
L. L.
Jones
, and
M. K.
Bowman
,
J. Phys. Chem.
83
,
3429
(
1979
).
38.
A. E.
Stillman
,
L. J.
Schwartz
, and
J. H.
Freed
,
J. Chem. Phys.
73
,
3502
(
1980
).
39.
L. J.
Schwartz
,
A. E.
Stillman
, and
J. H.
Freed
,
J. Chem. Phys.
77
,
5375
(
1982
).
40.
J.
Gorcester
and
J. H.
Freed
,
J. Chem. Phys.
85
,
5375
(
1986
).
41.
J.
Gorcester
and
J. H.
Freed
,
J. Chem. Phys.
88
,
4678
(
1988
).
42.
(a)
J.
Gorcester
and
J. H.
Freed
,
J. Magn. Reson.
78
,
292
(
1988
);
(b) The LPSVD results in S2 solvent do indicate very weakδM1 = ±2 peaks, but only at the highest temperatures studied, consistent with a very small Heisenberg exchange at those temperatures.
43.
J. P.
Hornak
and
J. H.
Freed
,
Chem. Phys. Lett.
101
,
115
(
1983
).
44.
G.
Maier
and
A.
Saupe
,
Mol. Cryst. Liq. Cryst.
1
,
515
(
1965
).
45.
W. L.
McMillan
,
Phys. Rev. A
4
,
1238
(
1971
);
W. L.
McMillan
,
6
,
936
(
1972
).,
Phys. Rev. A
46.
K.
Kobayashi
,
Mol. Cryst. Liq. Cryst.
13
,
137
(
1971
).
47.
M. J.
Stephen
and
J. P.
Straley
,
Rev. Mod. Phys.
46
,
617
(
1974
).
48.
P. J. Wojtowicz, in Introduction to Liquid Crystals, edited by E. B. Priestley, P. J. Wojtowicz, and P. Sheng (Plenum, New York, 1975), Chap. 7.
49.
L. P.
Hwang
and
J. H.
Freed
,
J. Chem. Phys.
63
,
118
(
1975
).
50.
J. H.
Freed
and
G. K.
Fraenkel
,
J. Chem. Phys.
39
,
326
(
1963
).
51.
S. A.
Goldman
,
G. V.
Bruno
,
C. F.
Polnaszek
, and
J. H.
Freed
,
J. Chem. Phys.
56
,
716
(
1972
).
52.
P. W. Atkins, in Electron Spin Relaxation in Liquids, edited by L. T. Muus and P. W. Atkins (Plenum, New York, 1972).
53.
M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).
54.
G. R.
Luckhurst
and
C.
Zannoni
,
Proc. R. Soc. London Ser. A.
353
,
87
(
1977
).
55.
L. D. Favro, in Fluctuation Phenomenon in Solids, edited by R. E. Burgess (Academic, New York, 1965), p. 79.
56.
C. F.
Polnaszek
,
G. V.
Bruno
, and
J. H.
Freed
,
J. Chem. Phys.
58
,
3185
(
1973
).
57.
G.
Moro
and
P. L.
Nordio
,
Mol. Cryst. Liq. Cryst.
104
,
361
(
1984
).
58.
R. Schaetzing and J. D. Litster, Advances in Liquid Crystals (Clarendon, Oxford, 1979), Vol. 4, p. 147.
59.
G. P.
Zientara
and
J. H.
Freed
,
J. Chem. Phys.
79
,
3077
(
1983
).
60.
R. Y.
Dong
,
Isr. J. Chem.
23
,
370
(
1983
), see Ref. 23.
61.
L.
Plomp
and
J.
Bulthuis
,
Liq. Cryst.
3
,
927
(
1988
).
62.
M.
Warner
,
Mol. Phys.
52
,
677
(
1984
).
63.
P. G.
de Gennes
,
Solid State Commun.
10
,
573
(
1972
).
64.
L.
Léger
and
A.
Martinet
,
J. Phys. (Paris) Colloq.
37
,
C3
89
(
1976
).
65.
B. C.
Nishida
,
R. L.
Vold
, and
R. R.
Vold
,
J. Phys. Chem.
90
,
4465
(
1986
).
66.
(a)
S. A.
Zager
and
J. H.
Freed
,
J. Chem. Phys.
77
,
3344
(
1982
);
(b)
S. A.
Zager
and
J. H.
Freed
,
77
,
3360
(
1982
).,
J. Chem. Phys.
67.
G.
Moro
and
J. H.
Freed
,
J. Chem. Phys.
74
,
3757
(
1981
);
G.
Moro
and
J. H.
Freed
,
75
,
3157
(
1981
).,
J. Chem. Phys.
68.
L. J. Schwartz, Ph.D. thesis, Cornell University, 1984;
L. J. Schwartz and J. H. Freed (to be published).
69.
J. H. Freed, in Time Domain Electron Spin Resonance, edited by L. Kevan and R. N. Schwartz (Wiley, New York, 1979).
70.
J. Gorcester, Ph.D. thesis, Cornell University, 1989.
71.
E.
Meirovitch
and
J. H.
Freed
,
J. Phys. Chem.
88
,
4995
(
1984
).
72.
S. B.
Rananavare
,
V. G. K. M.
Pisipati
, and
J. H.
Freed
,
Chem. Phys. Lett.
140
,
255
(
1987
).
73.
In our analysis, we have not included any effects from intramolecular motions. In Ref. 4, possible effects of any interconversion between the two twisted boat conformations were considered, since this could modulate the orientation of the hyperfine tensor. A twisted boat conformation exists in a single crystal, but no direct evidence has been seen in solution because only one methyl 13C hf coupling constant is observed (Ref. 4). In many careful CW spin‐relaxation studies, in particular, those reported in Refs. 4 and 66(b), where different solvents were studied as a function of temperature and pressure, no spin‐relaxation could be detected which could be attributed to any residual contributions from intramolecular processes, since such a process would obey very different dependences on viscosity, temperature, and pressure than exhibited for the overall molecular reorientation.
74.
C. F. Polnaszek, Ph.D. thesis, Cornell University, 1976.
75.
See Ref. 3, Table I; these results are for isotropic Brownian diffusion.
76.
P. de Gennes, The Physics of Liquid Crystals (Oxford, Oxford, 1974).
77.
G. J.
Krüger
,
Phys. Rep.
82
,
230
(
1982
).
78.
J. P.
Hornak
,
J. K.
Moscicki
,
D. J.
Schneider
, and
J. H.
Freed
,
J. Chem. Phys.
84
,
3387
(
1986
).
79.
N.
Boden
,
L. D.
Clark
,
R. J.
Bushby
,
J. W.
Emsley
,
G. R.
Luckhurst
, and
C. P.
Straley
,
Mol. Phys.
42
,
565
(
1981
).
80.
C. J. R.
Counsell
,
J. W.
Emsley
,
G. R.
Luckhurst
, and
H. S.
Sachdev
,
Mol. Phys.
63
,
33
(
1988
).
81.
J. H.
Freed
,
J. Phys. Chem.
71
,
38
(
1967
).
82.
Thus, the effect of quadrupole relaxation would be to contribute directly to the intensity of both the δML = ±1 and δML = ±2 cross peaks.
83.
E. Merzbacher, Quantum Mechanics, 2nded. (Wiley, New York, 1970).
84.
Strictly speaking, one must also correct the observed FID for the limited bandwidth of the resonator as referred to in Sec. II D of Ref. 41. However, the method given above for determining Vir2i automatically includes this correction.
This content is only available via PDF.
You do not currently have access to this content.