The solution of the reactive scattering problem by R‐matrix propagation requires a number of choices which may affect the numerical accuracy. Although the formal definitions and development were given in detail in the preceding paper, in this paper we give (a) the specific choices and numerical procedures followed in our calculation, (b) a discussion and evaluation of the stability of the calculation with respect to these choices, and (c) results for three dimensional J=0 reactive scattering of H3, H2D, and HD2 systems in the energy range from threshold to about 1.30 to 1.50 eV.

1.
F.
Webster
and
J. C.
Light
,
J. Chem. Phys.
90
,
265
(
1989
).
2.
F. J. O. Webster, Ph.D. thesis, University of Chicago, Chicago, Illinois, 1987. All the figures presented in this thesis were presented at the 1987 American Conference on Theoretical Chemistry in July 1987.
3.
F.
Webster
and
J. C.
Light
,
J. Chem. Phys.
85
,
4744
(
1986
). Also see Appendix A of Ref. 1.
4.
J.
Geddes
,
H. F.
Krause
, and
W. L.
Fite
,
J. Chem. Phys.
56
,
3298
(
1972
);
R.
Götting
,
H. R.
Mayne
,
J. P.
Toennies
,
J. Chem. Phys.
80
,
2230
(
1984
); ,
J. Chem. Phys.
R.
Götting
,
H. R.
Mayne
,
J. P.
Toennies
,
85
,
6396
(
1986
); ,
J. Chem. Phys.
R.
Götting
,
V.
Herrero
,
J. P.
Toennies
, and
M.
Vodegel
,
Chem. Phys. Lett.
137
,
524
(
1987
);
S. A.
Butin
,
C. F.
Giese
, and
W. R.
Gentry
,
J. Chem. Phys.
87
,
1443
(
1987
).
5.
D. P.
Gerrity
and
J. J.
Valentini
,
J. Chem. Phys.
79
,
5202
(
1983
);
D. P.
Gerrity
and
J. J.
Valentini
,
81
,
1298
(
1984
); ,
J. Chem. Phys.
D. P.
Gerrity
and
J. J.
Valentini
,
82
,
1323
(
1985
); ,
J. Chem. Phys.
D. K.
Veirs
,
G. M.
Rosenblatt
, and
J. J.
Valentini
,
J. Chem. Phys.
83
,
1605
(
1985
); ,
J. Chem. Phys.
J.‐C.
Nieh
and
J. J.
Valentini
,
Phys. Rev. Lett.
60
,
519
(
1988
).
6.
C. T.
Rettner
,
E. E.
Marinero
, and
R. N.
Zare
,
J. Chem. Phys.
80
,
4142
(
1984
).
7.
K.
Tsukiyama
,
B.
Katz
, and
R.
Bersohn
,
J. Chem. Phys.
84
,
1934
(
1986
);
U.
Gerlach‐Meyer
,
K.
Kleinermanns
,
E.
Linnebach
, and
J.
Wolfrum
,
J. Chem. Phys.
86
,
3047
(
1987
).,
J. Chem. Phys.
8.
B.
Liu
,
J. Chem. Phys.
58
,
1925
(
1973
);
P.
Siegbahn
and
B.
Liu
,
J. Chem. Phys.
68
,
2457
(
1978
); ,
J. Chem. Phys.
D. G.
Truhlar
and
C. J.
Horwitz
,
J. Chem. Phys.
68
,
2468
(
1978
); ,
J. Chem. Phys.
J. Chem. Phys.
71
,
1514E
(
1979
); ,
J. Chem. Phys.
B. R.
Johnson
,
J. Chem. Phys.
74
,
754
(
1981
).,
J. Chem. Phys.
9.
(a)
D. M.
Garner
,
D. G.
Fleming
, and
R. J.
Mikula
,
Chem. Phys. Lett.
121
,
80
(
1985
);
I. D.
Reid
,
D. M.
Garner
,
L. Y.
Lee
,
M.
Senba
,
D. J.
Arseneau
, and
D. G.
Fleming
,
J. Chem. Phys.
86
,
5578
(
1987
);
(b)
G. C.
Schatz
,
J. Chem. Phys.
83
,
3441
(
1985
).
10.
E. B. Stechel, Ph.D. thesis, University of Chicago, Chicago, Illinois, 1981.
11.
E. B. Stechel, R. B. Walker, and J. C. Light, in Report of Workshop on Reactive Collisions (Centre Européen de Calcul Atomique et Moléculaire, Orsay, France, 1977), p. 1.
12.
R. B.
Walker
,
E. B.
Stechel
, and
J. C.
Light
,
J. Chem. Phys.
69
,
2922
(
1978
).
13.
A. B.
Elkowitz
and
R. E.
Wyatt
,
J. Chem. Phys.
62
,
2504
(
1975
).
14.
G. C.
Schatz
and
A.
Kuppermann
,
J. Chem. Phys.
65
,
4668
(
1976
).
15.
G. C. Schatz, in The Theory of Chemical Reaction Dynamics, edited by D. C. Clary (Reidel, Dordrecht, 1986), p. 1.
16.
G. C.
Schatz
,
Chem. Phys. Lett.
108
,
532
(
1984
);
G. C.
Schatz
,
J. Chem. Phys.
83
,
3441
(
1985
);
B. C.
Garrett
,
D. G.
Truhlar
, and
G. C.
Schatz
,
J. Am. Chem. Soc.
108
,
2876
(
1986
).
17.
M. C.
Colton
and
G. C.
Schatz
,
Chem. Phys. Lett.
124
,
256
(
1986
).
18.
A.
Kuppermann
and
P. G.
Hipes
,
J. Chem. Phys.
84
,
5962
(
1986
).
19.
G. A.
Parker
,
R.
T Pack
,
B. J.
Archer
, and
R. B.
Walker
,
Chem. Phys. Lett.
137
,
564
(
1987
);
R.
T Pack
and
G. A.
Parker
,
J. Chem. Phys.
87
,
3888
(
1987
).
20.
K.
Haug
,
D. W.
Schwenke
,
Y.
Shima
,
D. G.
Truhlar
,
J.
Zhang
, and
D. J.
Kouri
,
J. Phys. Chem.
90
,
6757
(
1986
).
21.
J.
Zhang
,
D. J.
Kouri
,
K.
Haug
,
D. W.
Schwenke
,
Y.
Shima
, and
D. G.
Truhlar
,
J. Chem. Phys.
88
,
2492
(
1988
).
22.
J. Z. H.
Zhang
and
W. H.
Miller
,
Chem. Phys. Lett.
140
,
329
(
1987
).
23.
(a)
K.
Haug
,
D. W.
Schwenke
,
D. G.
Truhlar
,
Y.
Zhang
,
J. Z. H.
Zhang
, and
D. J.
Kouri
,
J. Chem. Phys.
87
,
1892
(
1987
);
J. Z. H.
Zhang
and
W. H.
Miller
,
J. Chem. Phys.
88
,
4549
(
1988
); ,
J. Chem. Phys.
(b)
M.
Mladenovic
,
M.
Zhao
,
D. G.
Truhlar
,
D. W.
Schwenke
,
Y.
Sun
, and
D. J.
Kouri
,
Chem. Phys. Lett.
146
,
358
(
1988
).
24.
R. P.
Saxon
and
J. C.
Light
,
J. Chem. Phys.
56
,
3874
(
1972
);
A.
Altenberger‐Siczek
and
J. C.
Light
,
J. Chem. Phys.
61
,
4373
(
1974
); ,
J. Chem. Phys.
A.
Kuppermann
,
G. C.
Schatz
, and
M.
Baer
,
J. Chem. Phys.
65
,
4596
(
1976
).,
J. Chem. Phys.
25.
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
,
Chem. Phys. Lett.
89
,
483
(
1982
);
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
,
J. Chem. Phys.
85
,
900
(
1986
).
26.
J. C.
Light
and
R. B.
Walker
,
J. Chem. Phys.
65
,
4272
(
1976
).
27.
M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).
28.
E. B.
Stechel
,
R. B.
Walker
, and
J. C.
Light
,
J. Chem. Phys.
69
,
3518
(
1978
).
29.
See AIP document JCPSA‐89‐0300‐98 for 98 pages of data: introduction and list of tables, summed reaction probabilities for all seven reactions at all calculated energies, and reactive and nonreactive blocks of the probability matrices at the representative energies listed in Table IV.
Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, 335 E. 45 St., New York, N.Y. 10017.
The price is $1.50 for each microfiche (98 pages), or $5 for photocopies of up to 30 pages and $0.15 for each page over 30 pages. Airmail additional. Make check payable to American Institute of Physics.
30.
R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics (Oxford, New York, 1974).
31.
A note on computational efficiency. The propagation procedure can use 340 coupled channels in each arrangement channel, and an S matrix of dimension 620 can be calculated, both requiring less than eight megabytes of physical memory. A full (98, 74,A) HD2 calculation on an FPS‐164 requires 42 s per energy for the α channel FBR; 144 s for the β channel FBR; 159 s for the α and β channel DVR; and 25 s for evaluating the S matrix, i.e., 370 s per energy for the full asymmetric S matrix. For this program, the FPS‐164 is 6.5 times faster than an Elxsi 6420 and 41 times faster than a Micro‐VAX II.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.