The vibration‐rotation energies of the planar XY3 molecular model are investigated to the second order of approximation, including the cubic and quartic anharmonic terms of the potential energy, the Coriolis interactions between the degenerate oscillations and the total angular momentum, the dependence of the moments of inertia upon the vibrational state, and the centrifugal expansion terms. The contact transformation developed by Shaffer, Nielsen, and Thomas is applied to the Wilson‐Howard Hamiltonian, and it is found that the energies are simply the diagonal elements of the transformed Hamiltonian. The energies are expressed in term value form, E/hc=Gvib+Frot—ζh/4π2cIzz0(l2—l4)K, Gvib, Frot, and ζ being given in terms of the constants appearing in the Hamiltonian. The dependence of the moments of inertia, Ixx and Izz, upon the vibrational states is determined, and it is found that the quantity Δ=Izz—2Ixx is independent of the anharmonic constants, depending only on the dimensions of the molecule, the normal frequencies, and the vibrational state.
Skip Nav Destination
Article navigation
August 1941
Research Article|
December 29 2004
Vibration‐Rotation Energies of the Planar XY3 Molecular Model
Samuel Silver;
Samuel Silver
Mendenhall Laboratory of Physics, Ohio State University, Columbus, Ohio
Search for other works by this author on:
Wave H. Shaffer
Wave H. Shaffer
Mendenhall Laboratory of Physics, Ohio State University, Columbus, Ohio
Search for other works by this author on:
J. Chem. Phys. 9, 599–606 (1941)
Article history
Received:
April 02 1941
Citation
Samuel Silver, Wave H. Shaffer; Vibration‐Rotation Energies of the Planar XY3 Molecular Model. J. Chem. Phys. 1 August 1941; 9 (8): 599–606. https://doi.org/10.1063/1.1750961
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00