Monte Carlo methods are described for evaluating the Feynman path integral representation of the (real time) propagator (time evolution operator), exp(−iHt/ℏ). The approach is based on the modified Filinov algorithm presented earlier by Makri and Miller [Chem. Phys. Lett. 139, 10 (1987)]. Numerical calculations are presented for time evolution in a symmetric double well potential, as well as in a Morse potential.

1.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw‐Hill, New York, 1965).
2.
P.
Pechukas
,
Phys. Rev.
181
,
166
,
174
(
1969
).
3.
W. H.
Miller
,
J. Chem. Phys.
53
,
1949
(
1970
);
W. H.
Miller
,
Adv. Chem. Phys.
25
,
69
(
1974
).
4.
(a)
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
);
(b)
R.
Jaquet
and
W. H.
Miller
,
J. Phys. Chem.
89
,
3139
(
1984
);
(c)
K.
Yamashita
and
W. H.
Miller
,
J. Chem. Phys.
82
,
5475
(
1985
).
5.
(a)
D.
Thirumalai
and
B. J.
Berne
,
J. Chem. Phys.
79
,
5029
(
1983
);
D.
Thirumalai
and
B. J.
Berne
,
81
,
2512
(
1984
); ,
J. Chem. Phys.
(b)
D.
Thirumalai
,
E. J.
Bruskin
, and
B. J.
Berne
,
J. Chem. Phys.
79
,
5063
(
1983
); ,
J. Chem. Phys.
(c)
D.
Thirumalai
and
B. J.
Berne
,
Annu. Rev. Phys. Chem.
37
,
401
(
1986
).
6.
(a)
E. C.
Behrman
,
G. A.
Jongeward
, and
P. G.
Wolynes
,
J. Chem. Phys.
79
,
6277
(
1983
);
(b)
E. C.
Behrman
and
P. G.
Wolynes
,
J. Chem. Phys.
83
,
5863
(
1985
).,
J. Chem. Phys.
7.
(a)
J. D.
Doll
,
J. Chem. Phys.
81
,
3536
(
1984
);
(b)
J. D.
Doll
and
D. L.
Freeman
,
Science
234
,
1356
(
1986
).
8.
J.
Chang
and
W. H.
Miller
,
J. Chem. Phys.
87
,
1648
(
1987
).
9.
J. D.
Doll
,
R. D.
Coalson
, and
D. L.
Freeman
,
J. Chem. Phys.
87
,
1641
(
1987
).
10.
(a)
M.
Parrinello
and
A.
Rahman
,
J. Chem. Phys.
80
,
860
(
1984
);
(b)
C. D.
Jonah
,
C.
Romero
, and
A.
Rahman
,
Chem. Phys. Lett.
123
,
209
(
1986
).
11.
R. A.
Kuharski
and
P. J.
Rossky
,
Chem. Phys. Lett.
103
,
357
(
1984
);
R. A.
Kuharski
and
P. J.
Rossky
,
J. Chem. Phys.
82
,
5164
(
1985
).
12.
(a)
A.
Nichols
III
,
D.
Chandler
,
Y.
Singh
, and
D.
Richardson
,
J. Chem. Phys.
81
,
5109
(
1984
);
(b)
M.
Sprik
,
M. L.
Klein
, and
D.
Chandler
,
J. Chem. Phys.
83
,
3042
(
1985
).,
J. Chem. Phys.
13.
(a)
J.
Bartholomew
,
R.
Hall
, and
B. J.
Berne
,
Phys. Rev. B
32
,
548
(
1985
);
(b)
A.
Wallquist
and
B. J.
Berne
,
Chem. Phys. Lett.
117
,
214
(
1985
);
(c)
A.
Wallquist
,
D.
Thirumalai
, and
B. J.
Berne
,
J. Chem. Phys.
85
,
1583
(
1986
).
14.
See also, the entire issue
J. Stat. Phys.
43
, Nos.
5/6
(
1986
).
15.
(a)
J. D.
Doll
,
R. D.
Coalson
, and
D. L.
Freeman
,
Phys. Rev. Lett.
55
,
1
(
1985
);
(b)
R. D.
Coalson
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
85
,
4567
(
1986
).
16.
N.
Makri
and
W. H.
Miller
,
Chem. Phys. Lett.
139
,
10
(
1987
).
17.
J. D. Doll (private communication).
18.
V. S.
Filinov
,
Nucl. Phys. B
271
,
717
(
1986
).
19.
J. D.
Doll
,
D. L.
Freeman
, and
M. J.
Gillan
,
Chem. Phys. Lett.
143
,
277
(
1988
).
20.
R. D.
Coalson
,
J. Chem. Phys.
85
,
926
(
1986
).
21.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
);
J. P. Valleau and S. G. Whittington in Modern Theoretical Chemistry, edited by B. J. Berne (Plenum, New York, 1977), Vol. 5, pp. 137–168.
22.
C. H.
Bennett
,
J. Comp. Phys.
22
,
245
(
1976
).
23.
S.
Kirkpatrick
,
C. D.
Gelatt
,Jr.
, and
M. P.
Vecchi
,
Science
220
,
671
(
1983
);
M.
Sprik
and
M. L.
Klein
,
J. Chem. Phys.
87
,
5987
(
1987
).
24.
M.
Sprik
,
M. L.
Klein
, and
D.
Chandler
,
Phys. Rev. B
31
,
4234
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.