We present a new method for numerical integration of the radial electronic Schrödinger equation with these characteristics: (i) it uses a quantity directly related to the logarithmic derivative of the wave function, thereby facilitating the matching of solutions obtained for different radial regions; (ii) it avoids difficulty from the singularity of the logarithmic derivative at the nodes of the wave function; and (iii) it takes appropriate cognizance of the asymptotic form of the wave function at infinite radius. Examples are presented showing that eigenvalues can be obtained by the new method by outward integration alone, but that a combination of inward and outward integration leads to efficiencies which compare favorably with those achievable by the most popular previously existent method, that of Numerov.

1.
A. G. Koures and F. E. Harris (to be published).
2.
K. H.
Johnson
,
Adv. Quantum. Chem.
7
,
143
(
1973
);
K. H.
Johnson
and
F. C.
Smith
, Jr.
,
Phys. Rev. Lett.
24
,
139
(
1970
).
3.
F. Herman and S. Skillman, Atomic Structure Calculation (Prentice‐Hall, Englewood Cliffs, NJ, 1963);
J. M.
Blatt
,
J. Comp. Phys.
1
,
382
(
1967
).
4.
M. Maron, Numerical Analysis; A Practical Approach (Macmillan, London, 1982), p. 359; L. Lapidus and J. H. Seinfeld, Numerical Solution of Ordinary Differential Equations (Academic, New York, 1971), p. 113.
5.
R. W. Hamming, Numerical Methods for Scientists and Engineers (McGraw‐Hill, New York, 1962), p. 214.
6.
E.
Oset
and
L. L.
Salcedo
,
J. Comp. Phys.
57
,
361
(
1985
);
E.
Buendia
and
R.
Guardiola
,
J. Comp. Phys.
60
,
561
(
1985
).,
J. Comp. Physiol.
7.
B. R.
Johnson
,
J. Chem. Phys.
67
,
4086
(
1977
);
B. R.
Johnson
,
69
,
4678
(
1978
).,
J. Chem. Phys.
8.
L. Lapidus and J. H. Seinfeld, Numerical Solution of Ordinary Differential Equations (Academic, New York, 1971), Chap. 2.
9.
G. Dahlquist and A. Björck, Numerical Methods (Prentice‐Hall, Engelwood Cliffs, NJ, 1974), pp. 269–273.
10.
C. S.
Lai
,
Phys. Rev.
23
,
A455
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.