Potential energy, dipole moment, and electronic transition moment functions have been calculated for the X2Σ+, A2Π, and B2Σ+ states of the CN radical using internally contracted CASSCF‐CI electronic wave functions (configuration interaction with complete active space self‐consistent‐field reference functions) and large basis sets. All molecular orbitals which can be formed from the atomic 2s and 2p orbitals were included in the active space. The effect of adding δ orbitals to the active space was found to be small. The largest calculations included up to 987 reference configurations and were equivalent to uncontracted MR‐CI calculations with 11.8 million configurations. These calculations are the most accurate that have been carried out to date in terms of the size of the basis set and the treatment of electron correlation effects. Using the theoretical transition moment functions and RKR potential energy functions, radiative lifetimes of the A2Π and B2Σ+ states have been derived. The lifetimes of the A state vary between 11.2 μs for v′=0 and 5.3 μs for v′=10. The lifetime of the B, v′=0 state is calculated to be 60.7 ns. These values are estimated to be accurate within 5% and are compared to previous experimental and theoretical data. The most recent experimentally measured lifetimes differ by 20% to 35% from the calculated values, while our results are in close agreement with other theoretical studies. Einstein coefficients of spontaneous emission and oscillator strengths for AX, BX, and BA transitions are tabulated. Dipole moment functions have also been determined, and radiative transition probabilities between vibrational levels of the ground state are presented.

1.
M. R.
Combi
,
Astrophys. J.
241
,
830
(
1980
).
2.
A.
Mele
and
H.
Okabe
,
J. Chem. Phys.
51
,
4798
(
1969
).
3.
G. A.
West
and
M. J.
Berry
,
J. Chem. Phys.
61
,
4700
(
1974
).
4.
M.
Jeunehomme
,
J. Chem. Phys.
42
,
4086
(
1965
).
5.
J. O.
Arnold
and
R. W.
Nicholls
,
J. Quant. Spectrosc. Radiat. Transfer
12
,
1435
(
1972
).
6.
D. L.
Duric
,
R.
Erman
, and
M.
Larsson
,
Phys. Scr.
18
,
39
(
1978
).
7.
D. H.
Katayama
,
T. A.
Miller
, and
V. E.
Bondybey
,
J. Chem. Phys.
71
,
1662
(
1979
).
8.
C.
Conley
,
J. B.
Halpern
,
J.
Wood
,
C.
Vaughn
, and
W. M.
Jackson
,
Chem. Phys. Lett.
73
,
274
(
1980
).
9.
M. R.
Taherian
and
T. G.
Slanger
,
J. Chem. Phys.
81
,
3814
(
1984
).
10.
D. C.
Cartwright
and
P. J.
Hay
,
Astrophys. J.
257
,
383
(
1982
).
11.
M.
Larsson
,
P. E. M.
Siegbahn
, and
H.
Agren
,
Astrophys. J.
272
,
369
(
1983
).
12.
C.
Sneden
and
D. L.
Lambert
,
Astrophys. J.
259
,
381
(
1982
).
13.
D. L. Lambert (private communication).
14.
H.
Lavendy
,
G.
Gandara
, and
J. M.
Robbe
,
J. Mol. Spectrosc.
106
,
395
(
1984
).
15.
H.‐J.
Werner
,
Adv. Chem. Phys.
49
,
1
(
1987
).
16.
H.‐J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
17.
P. J.
Knowles
and
H.‐J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
18.
H.‐J.
Werner
and
E.‐A.
Reinsch
,
J. Chem. Phys.
76
,
3144
(
1982
).
19.
H.‐J. Werner and E.‐A. Reinsch, in Advanced Theories and Computational Approaches to the Electronic Structure of Molecules, edited by C. E. Dykstra (Reidel, Dordrecht, 1984).
20.
H.‐J.
Werner
,
J. Chem. Phys.
80
,
5080
(
1984
).
21.
H. ‐J. Werner and P. Rosmus, in Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules—The State of the Art, edited by R. J. Bartlett (Reidel, Dordrecht, 1985).
22.
H.‐J.
Werner
,
P.
Rosmus
,
W.
Schaetzl
, and
W.
Meyer
,
J. Chem. Phys.
80
,
831
(
1984
).
23.
H.‐J.
Werner
,
J.
Kalcher
, and
E.‐A.
Reinsch
,
J. Chem. Phys.
81
,
2420
(
1984
).
24.
P.
Rosmus
and
H.‐J.
Werner
,
J. Chem. Phys.
80
,
5085
(
1984
).
25.
P.
Rosmus
,
H.‐J.
Werner
,
E.‐A.
Reinsch
, and
M.
Larsson
,
J. Electron. Spectrosc.
41
,
289
(
1986
).
26.
J.
Senekowitsch
,
P.
Rosmus
,
H.‐J.
Werner
, and
M.
Larsson
,
Z. Naturforsch. Teil A
41
,
719
(
1986
).
27.
U.
Mänz
,
A.
Zilch
,
P.
Rosmus
, and
H.‐J.
Werner
,
J. Chem. Phys.
84
,
5037
(
1986
).
28.
C. W.
Bauschlicher
,
S. R.
Langhoff
, and
P. R.
Taylor
,
Astrophys. J.
332
,
531
(
1988
).
29.
F. B. van Duijneveldt, IBM Research Report, 1971.
30.
H.‐J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
82
,
5053
(
1985
).
31.
P. J.
Knowles
and
H.‐J.
Werner
,
Chem. Phys. Lett.
115
,
259
(
1985
).
32.
N. Furio, A. Ali, P. J. Dagdigian, and H.‐J. Werner, J. Mol. Spectrosc. (submitted).
33.
J. W.
Cooley
,
Math. Comput.
15
,
363
(
1961
).
34.
A. J.
Kotlar
,
R. W.
Field
,
J. I.
Steinfeld
, and
J. A.
Coxon
,
J. Mol. Spectrosc.
80
,
82
(
1980
).
35.
E. E.
Whiting
,
A.
Schadee
,
J. B.
Tatum
,
J. T.
Hougen
, and
R. W.
Nicholls
,
J. Mol. Spectrosc.
80
,
249
(
1980
).
36.
H.
Ito
,
Y.
Ozaki
,
K.
Suzuki
,
T.
Kondow
, and
K.
Kuchitsu
,
J. Mol. Spectrosc.
127
,
143
(
1988
).
37.
H.
Ito
,
Y.
Ozaki
,
K.
Suzuki
,
T.
Kondow
, and
K.
Kuchitsu
,
J. Mol. Spectrosc.
127
,
283
(
1988
).
38.
M.
Larsson
and
P. E. M.
Siegbahn
,
J. Chem. Phys.
79
,
2270
(
1983
).
39.
S. R.
Langhoff
,
C. W.
Bauschlicher
, and
P. R.
Taylor
,
J. Chem. Phys.
86
,
6992
(
1987
).
40.
R.
Treffers
,
Astrophys. J.
196
,
883
(
1975
).
41.
T. J.
Cook
and
B. H.
Levy
,
J. Chem. Phys.
57
,
5059
(
1972
).
42.
C. K.
Luk
and
R.
Bersohn
,
J. Chem. Phys.
58
,
2153
(
1973
).
43.
H. S.
Liszt
and
J. E.
Hesser
,
Astrophys. J.
159
,
1101
(
1970
).
44.
K.
Kirby‐Docken
and
B.
Liu
,
J. Chem. Phys.
66
,
4309
(
1977
).
45.
R.
Thomson
and
F. W.
Dalby
,
Can. J. Phys.
46
,
2815
(
1968
).
46.
T. J.
Cook
and
B. H.
Levy
,
J. Chem. Phys.
59
,
2387
(
1973
).
47.
H.‐J.
Werner
,
Mol. Phys.
44
,
111
(
1981
).
48.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
49.
W. M.
Jackson
,
J. Chem. Phys.
61
,
4177
(
1974
).
This content is only available via PDF.
You do not currently have access to this content.